
An Ontology for ISO software engineering standards: 2) Proof of concept
and application

C. Gonzalez-Perez a,⁎, B. Henderson-Sellers b, T. McBride c, G.C. Low d, X. Larrucea e

a Incipit CSIC, Spain
b Australia
c University of Technology, Sydney, Australia
d University of New South Wales, Australia
e Tecnalia, Spain

a b s t r a c ta r t i c l e i n f o

Article history:
Received 1 December 2015
Received in revised form 27 April 2016
Accepted 28 April 2016
Available online 14 May 2016

Software engineering standards often utilize different underpinning metamodels and ontologies, which
sometimes differ between standards. For better adoption by industry, harmonization of these standards by use
of a domain ontology has been advocated. In this paper we apply this approach in a proof of concept project.
We recommend the creation of a single underpinning abstract domain ontology, created from existing ISO/IEC
standards including ISO/IEC 24744 and 24765 and supplemented by any other sources authorized by SC7 as
being appropriate and useful. Such an adoption of a single ontology will permit the re-engineering of existing
International Standards such as 12207, 15288 and 33061 as refinements from this domain ontology so that
these variously focussed standards can all inter-operate.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Software engineering
Ontologies
SC7
ISO/IEC 24744
Proof of concept

1. Introduction

The need for ISO International Standards to be consistent with each
other in terms of terminology, structure and semantics has long been
recognized and debated. The research reported here offers a potential
harmonization across ISO software engineering standards (within
Sub-Committee 7 (SC7) of ISO/IEC within Joint Technical Committee 1
(JTC1)) by creating a core set of concepts and their relationships, effec-
tively creating an abstract domain ontology for software engineering
standards creation and utilization. A domain ontology is often repre-
sented as a model, which is typically represented by a UML class
diagram in which the classes are concepts in the model [1]. Indeed,
the use of ontologies in software engineering has been growing over
the last decade (e.g. [2–6]) although Smith [6] notes that there is a dis-
tinction, often overlooked, between philosophical ontology (its roots)
and ontologies as used in information science. At the same time, the
use of ontologies in standards and standardization has also been
shown to be useful by e.g. [7,8].

Although Rout [9] analysed a number of SC7 standards, documenting
in which standards identified terms occurred together with their (dispa-
rate) definitions, only recently has harmonization become a crucial action
point (rather than a vague concern) in SC7, especially under Special
Working Group 5 (SWG5).

Harmonizing concepts and maintaining consistent terminology
within the current corpus of standards may be manageable, albeit
not easily, when SC7 projects are tightly related. However, harmoni-
zation becomes increasingly difficult as the number and disparity of
projects increases, introducing possible clashes of concepts across
projects — either locally or inter-project. It can also be argued that
the current SC7 corpus does not cover all topics (hence not all con-
cepts) in the domain of software engineering — yet without an
agreed base of software concepts, relations and core principles/
abstractions, extension of the corpuswill lead to further fragmentation
and inconsistency.

Consequent to the report ofMcBride et al. [10], a study groupwas cre-
ated under SWG5 of ISO/IEC's joint Sub-Committee 7 (SC7), which is re-
sponsible for all ISO software engineering standards. An infrastructure
was recommended and its research aspects discussed by Henderson-
Sellers et al. [11]. Building on this earlier paper, which provided the over-
all approach, we now provide a proof-of-concept development to com-
plement the proposals in [11] by developing it into a plausible DEO. The
benefits of conducting a proof-of-concept exercise are threefold. First, it
fulfils the requirements stipulated by the SWG5,which explicitly required
a proof-of-concept to be developed. Second, it shows what a DEO would
look like to parties not used to working with ontologies or domain
models. Third, it identifies problems andpotential barriers to the develop-
ment of a real DEO. By identifying problems and barriers, a future New
Work Item for the creation of an SC7 ontology would be able to consider
them upfront.

Computer Standards & Interfaces 48 (2016) 112–123

⁎ Corresponding author at: Incipit CSIC. Avda. de Vigo, s/n. 15705 Santiago de
Compostela. Spain.

http://dx.doi.org/10.1016/j.csi.2016.04.007
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.04.007&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.04.007
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.04.007
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


Over recent years, ISO/IEC 247441 (Software Development
Metamodel for Development Methodology) (ISO/IEC, 2007) was created
specifically to formalize and standardize a set of definitions of method-
focussed terms and their interrelationships, effectively creating a domain
ontology (e.g. [12]). At the same time, SWG5 focussed on understanding
the potential roles of not only ISO/IEC 24744 but also the Software Engi-
neering Vocabulary (SEVOCAB: ISO/IEC 24765), which merely collects
all disparate uses of every software engineering term in SC7, but makes
no attempt to harmonize them. Nevertheless, SEVOCAB constitutes a use-
ful and comprehensive data source input to the SWG5 harmonization
project to create a domain ontology for software engineering standards
[11]. Similarly, ISO/IEC TR 24774 presents guidelines for process descrip-
tions that also constitute a useful source for the harmonization effort.

This paper is structured as follows. In Section 2, we briefly summa-
rize the overall approach detailed in our earlier paper. Section 3 pre-
sents those elements identified as likely content for the proposed
domain ontology—mostly derived from the two aforementioned stan-
dards (ISO/IEC 24744 and 24,765). Section 4 explains how the domain
ontology and other related artefacts are intended to be used. Section 5
delivers further discussion on the practicalities of this approach, and
Section 6 summarizes the project results to date.

2. Brief overview of proposed approach for the domain ontology for
software engineering standards

2.1. Definitional elements ontology (DEO)

Our ontological work starts from the premise that a core set of
concepts that are relevant in software engineering can be identified
and characterized — for example, Process, Software Item or Team. With
careful definition and the identification of inter-concept relationships,
this core set forms the basis for an abstract domain ontology that does
not provide specific details about any one International Standard. This
is the definitional elements ontology (DEO), the most infrastructural
piece that was described in detail in our earlier paper [11].

2.2. Configured definitional ontology (CDO)

A configured definitional ontology (CDO) is a refinement of the DEO
specifically oriented towards a particular purpose — within the overall
scope of SC7 software engineering standards. It could therefore be consid-
ered as the definition of a domain specific modelling language for that
context (e.g. [13,14]). A CDO thus createdmay in fact become an interna-
tional standard itself (essentially this is what the current ISO/IEC 24744 is
for the context of software engineering methodologies) or may be part
(probably as an Informative Annex) of an International Standard.

Since a CDO is constructed by refinement or tailoring of the DEO, this
specificity can be obtained by either removing any unwanted elements
of the DEO and/or introducing new concepts that refine those in the
DEO (as illustrated in Fig. 1 and summarized below). Section 2.3
describes these mechanisms in full detail.

2.3. Refining the DEO into a CDO

2.3.1. Discarding elements from the DEO
Since the DEO must be expressed at a very high level of abstraction,

it will likely include concepts that cover a wide range of subfields of
software engineering. It is thus very unlikely that a particular CDO
needs to consider all those concepts, so one of the proposed refinement
mechanisms is that of element removal. Once a relevant class in the
DEO has been identified (i.e. one that must be reused in the CDO), any
associations with minimum cardinality greater than zero on the oppo-
site end may be “severed” and thus a portion of the DEO discarded.

For example, Fig. 1(a) shows a possible DEO including classes Process
and Producer plus an association between them with a zero-to-many
cardinality on the Process side. In a CDO targeting an areawhere people
are relevant but processes are not, and since theDEO allows the fact that
any particular producer (such as software developer Jane) may partici-
pate in no processes at all, Fig. 1(b) shows how the obtained CDO elim-
inates the Process element by “severing” the mentioned association,
leaving only the Producer class. Contrariwise, a CDO focussing on pro-
cesses but not interested in peoplewould not be able to discard the Pro-
ducer class since, according to Fig. 1(a), every process needs at least one
associated producer. Having a shared domain ontology in place ensures
that these constraints are observed.

2.3.2. Adding elements to the CDO
Also, and by being highly abstract, the DEO is supposed to contain

only very high-level and therefore general concepts. It is thus likely
that specialized definitions are needed for specific CDOs that are not
present in the DEO. In cases like this, it may be necessary to create a
new class for the CDO being created. However, it is important to note
that any such introduction must not contradict any existing semantics
in the DEO. In order to ensure that this is the case, additions must be
made by specialization (is-a-kind-of) of an existing DEO concept.
Fig. 1(b) shows, as an example, a specialization of Producer that has
been named Team, based on the grounds that teams are producers. In
the rare case that there is no existing supertype in the DEO that is suit-
able to serve as an abstract concept (i.e. a supertype) for the desired
new one, those responsible for the maintenance of the DEO would
need to consider whether such an addition – at the DEO level rather
than the CDO level – is warranted. This would necessarily be a rare
occurrence perhaps engendered by the inclusion of a brand-new and
highly novel technology and its associated concepts.

2.4. Chaining CDOs

In the SC7 context, International Standards often fall into “families”
(i.e. a collection of thematically related standards), such that the CDOs
for each member of the family are similar in some way. Thus hierarchi-
cal refinement (through specialization— as above) may create a coher-
ent set of CDOs. Fig. 2 shows a tailoring of the DEO, first into two CDOs
corresponding to two working groups (WG) of SC7. Then, within each
working group there may be coherent collections of standards forming
intra-working group families of standards (FoS). Further refinement can
then lead to CDOs for individual standards within each family. This is
called here “chaining of CDOs”, by which specificity and detail is
added incrementally and in parallel to the organizational structure
where the ontologies are going to be employed. At any point in the1 All ISO standards cited are listed separately at the end of the paper.

Fig. 1.Mechanisms for tailoring theDEOandobtainingCDOs from it. (a) Shows a fragment of
a conceivable DEO in its original form. (b) Shows the DEO as being tailored into a particular
CDO: a section of the DEO is being discarded and a subclass has been added. (after [11]).

113C. Gonzalez-Perez et al. / Computer Standards & Interfaces 48 (2016) 112–123



Download English Version:

https://daneshyari.com/en/article/454004

Download Persian Version:

https://daneshyari.com/article/454004

Daneshyari.com

https://daneshyari.com/en/article/454004
https://daneshyari.com/article/454004
https://daneshyari.com

