
Estuarine, Coastal and Shelf Science 115 (2012) 1-13

Estuarine, Coastal and Shelf Science

journal homepage: www.elsevier.com/locate/ecss

Recent changes in the marine ecosystems of the northern Adriatic Sea

Michele Giani^{a,*}, Tamara Djakovac^b, Danilo Degobbis^b, Stefano Cozzi^c, Cosimo Solidoro^a, Serena Fonda Umani^d

^a Istituto Nazionale di Oceanografia e di Geofisica Sperimentale, via A. Piccard 54, 34014 Trieste, Italy

^b Center for Marine Research, Rudjer Boskovic Institute (CMR), Rovinj, Croatia

^c Istituto di Scienze Marine, CNR, Trieste, Italy

^d Dipartimento di Scienze della Vita, Università di Trieste, Trieste, Italy

ARTICLE INFO

Article history: Received 14 August 2012 Accepted 27 August 2012 Available online 7 September 2012

Keywords: long-term changes nutrients hypoxia trophic levels marine ecosystems Adriatic Sea

ABSTRACT

This review of studies on long term series on river discharges, oceanographic features, plankton, fish and benthic compartments, collected since the 1970s revealed significant changes of mechanisms and trophic structures in the northern Adriatic ecosystems. A gradual increase of eutrophication pressure occurred during the 1970s until the mid 1980s, followed by a reversal of the trend, particularly marked in the 2000s. This trend was ascribed to the combination of a reduction of the anthropogenic impact, mainly due to a substantial decrease of the phosphorus loads, and of climatic modifications, resulting in a decline of atmospheric precipitations and, consequently, of the runoff in the northern Adriatic Sea. Significant decreases of the phytoplankton abundances were observed after the mid 1980s, concurrently with changes in the species composition of the zooplankton community were also observed. A decrease of demersal fishes, top predators and small pelagic fishes was ascribed to both overfishing and a demise of eutrophication.

Macrozoobenthic communities slowly recovered in the last two decades after the anoxia events of the 1970s and 1980s.

An increasing number of non-autochthonous species has been recorded in the last decades moreover the increasing seawater temperature facilitated the spreading of thermophilic species.

© 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The northern Adriatic Sea (NAd) is the shallowest (<60 m), land locked, northernmost region of the Mediterranean (Fig. 1).

The general circulation of NAd is driven by the combination of wind stress, river runoff and surface buoyancy fluxes, exchange at the southern boundary, and physiographic constraints. The Po and other river discharges originate a southward, intense, coastal current along the western coast (Western Adriatic Current, WAC), which fuels and sustains a cyclonic circulation, while on the eastern side of the basin, the weak, warm and salty Eastern Adriatic Current (EAC) flows along the eastern coast. At depth, a colder and denser water mass moves southwards. A bathymetric controlled transverse current along the 50 m isobath, re-circulate the EAC into the WAC (Poulain et al., 2001).

In this region, water column stratification, caused by freshwater buoyancy and heating of the sea surface, occurs from spring to mid

* Corresponding author. E-mail address: mgiani@inogs.it (M. Giani). autumn, whereas in winter cooling and cold north-easterly wind cause intense mixing and the formation of dense waters. The impact of nutrient loads from Italian rivers is more marked along the western and northern coastal areas, extending in period of water column stratification over larger areas (e.g. Degobbis et al., 2000; Cozzi and Giani, 2011). These processes together with remineralization sustain a high primary production. In contrast, in the eastern more oligotrophic NAd, less influenced by river discharges, remineralization processes are more relevant than external nutrient inputs.

Combined effects of the anthropogenic impact and regional climate changes are causing modifications of the physical and chemical oceanographic characteristics of the NAd, influencing its biota. These modifications are documented by a growing amount of data, so that their re-analysis is important to better clarify the current state of this marine ecosystem and to address future research.

In this paper the main changes observed during the last four decades in the NAd ecosystem are summarized, based on results of this Special Issue on "Fluctuations and trends in the northern

^{0272-7714/\$ -} see front matter @ 2012 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.ecss.2012.08.023

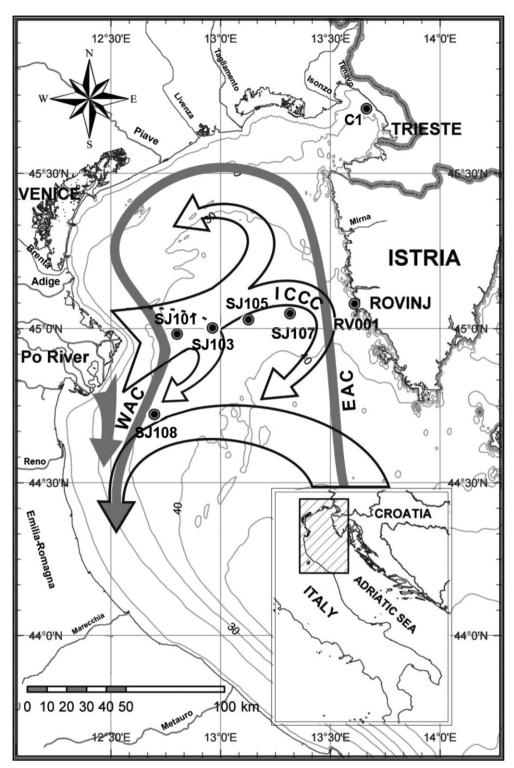


Fig. 1. The northern Adriatic Sea. Main sampling stations where long time series were collected. The Eastern Adriatic Current (EAC), the Istrian Coastal Countercurrent (ICCC), and the Western Adriatic Current (WAC) are also shown.

Adriatic marine systems: from annual to decadal variability" and on other recent scientific papers. Conclusions on some key parameters are further corroborated by analyses of unpublished data updating the existing long term series. Modifications in environmental conditions, caused by natural and anthropogenic pressures, and their effects from lower trophic levels up to fishes are considered.

2. Influence of climate changes on circulation, hydrologic and oceanographic properties

The NAd is under the influence of pronounced seasonal and inter-annual up to multi-decadal climate fluctuations over Europe (Camuffo et al., 2000). These fluctuations, which can be identified by indices, like the Northern Atlantic Oscillation (NAO), modify the Download English Version:

https://daneshyari.com/en/article/4540130

Download Persian Version:

https://daneshyari.com/article/4540130

Daneshyari.com