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Early and accurate discrimination of risky software projects is critical to project success. Researchers have
proposed many predictive approaches based on traditional modeling techniques, but the high misclassification
rate of risky projects is common. To overcome this problem, this study proposes a typical three-layered neural
network (NN) architecture with a back propagation algorithm that can learn the complex patterns of the
OMRON dataset. This study uses four accuracy evaluation criteria and two performance charts to objectively
quantify and visually illustrate the performance of the proposed approach. Experimental results indicate that
the NN approach is useful for predicting whether a project is risky. Specifically, this approach improves accuracy
and sensitivity by more than 12.5% and 33.3%, respectively, compared to a logistic regression model developed
from the samedatabase. These results imply that the proposed approach can be used for early planning of limited
project/organization resources and appropriate action for risky projects that are likely to cause schedule slippage
and cost overload.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

A recent industry survey has revealed that software projects can
fail due to a variety of problems including cost overload, schedule
slippage, requirement misunderstandings, and client dissatisfaction
[1]. There is a certain risk involved for any worthwhile software pro-
ject. This fact highlights the need for early identification of risky pro-
jects to enable the planning of essential risk management activities
and resources during their implementation. Suitable planning of re-
sources and actions can effectively increase the success rates of such
software projects [2].

Research work on risk prediction for software projects involves two
approaches: (1) predicting the overall degree of risk of a project and
(2) predicting whether a project is risky. The former provides a quanti-
fiable risk value so that project managers can discriminate between
high, medium, or low risk software projects with respect to a given pro-
ject risk level scale or by using clustering techniques [3–5]. The latter
provides a meaningful sign (risky/not risky) as a classifier that a risk-
prone project can be effectively identified early and thus aid the plan-
ning of risk management strategies [6,7]. The latter approach was con-
sidered in this study.

Numerous binary prediction approaches have been constructed
by statistical techniques for classifying risk-prone projects in the
literature. Examples include logistic regression [6], Bayesian classi-
fication [8], and the association rule [9]. Although the overall classi-
fication accuracy of these approaches is at an acceptable level,
correctly identifying a risky project at a true-positive rate is still a
challenge.

Effort investmentwithout the premise that a risky project is correct-
ly identified at the initial stage is ineffective [10]. For project managers,
misjudging a risky project diminishes their alertness during implemen-
tation. Consequently, the failure rates of the project would increase
without prior warning and thus, a great costwould be expended in con-
trolling the crisis. In other words, the incorrect classification of not risky
projects at the initial stage does not increase failure rates, even if extra
effort and resources are invested.

While neural networks (NNs) are regarded as a useful and accu-
rate model building technique, little research has been conducted
using this method to investigate issues related to software project
risk management. The two known applications we found focused
on risk analysis [11] and risk control [12]. There are currently no
studies on the use of NN for classifying projects as either risky or
not risky.

In this study, an NN model with a back propagation algorithm is
developed to predict how risk-prone a software project is. The
remainder of this paper is organized as follows. Section 2 reviews
some approaches related to project risk prediction. In Section 3, we
introduce the OMRON dataset and briefly explain the basic concepts
of NN. The steps for constructing our prediction approach are pre-
sented in Section 4. In Section 5, the experimental results are pre-
sented and then compared to results without the prediction model.
A comparison with previous work using logistic regression is
shown in Section 6. The external valuations produced are shown in
Section 7. Conclusions are presented in Section 8. Finally, limitations
and directions for future research are presented in Section 9.

2. Related work

The International Organization for Standardization (ISO) has
published ISO/IEC 16085 [13], addressing necessary processes to
continuously manage risks throughout the life cycle of a product or
service. This standard can be applied by any organization to manage
risk as uncertainty so that meaningful actions can be taken that
reduce or eliminate the probability and/or impact of these risks.
ISO/IEC 16085 suggests that a complete risk management process
must consist of seven essential activities: “plan and implement risk

management;” “manage the project risk profile;” “perform risk
analysis;” “perform risk monitoring;” “perform risk treatment;”
“evaluate the risk management process;” and “technical and
management processes.” Fig. 1 shows the structural process of this
standard. Beginning with an analysis of Fig. 1, it can be seen that
the “perform risk analysis” activity is critical because the risk-
proneness of a project should be captured tomake recommendations
for treatment at the initial stage.

Understanding the risk-proneness of a project is critical when trying
to determine whether to invest more effort and limited project/
organization resources into a new project. Hence many predictive
models have been proposed to assist project managers in managing
risky projects in the early stages. For example, Karolak [14] used a
Bayesian probability tree approach to develop a software engineering
risk management (SERIM) method for predicting the risk of software
projects. The method proposes a well-defined structure with 81 risk
questions, but no empirical studies or data have been used to examine
or improve its performance until now.

Tiwana et al. [4] investigated the importance of six risk factors for
software projects. Subsequently, they built a multiple linear regression
model to yield an overall risk score which was then converted into
five given project risk levels (high, moderately high, medium, moder-
ately low, and low). Although the foundation of the model was based
on a large dataset including 720 projects, the predictive performance
of the model was not provided and the external validity of extra new
projects was not performed.

Mizuno et al. [8] used a Bayesian classification approach to predict
the risk proneness of a software project based on 40 historical projects
in the OMRON company. The 10-fold cross-validation results indicated
that seven projects were not predicted correctly, corresponding to
17.5% inaccuracy. Moreover, two of the seven misclassified projects
were risky projects.

Takagi et al. [6] used the same dataset as Mizuno et al. to classify
risky projects by logistic regression. The predictive model was
constructed based on 32 projects from 1996 to 1997 and was then
validated by 8 projects in 1998. Only one validation project was clas-
sified incorrectly. Unfortunately, this misclassified project was a
risky project.

Amasaki et al. [9] also applied the OMRON dataset to build a pre-
dictive model. Eleven rules were extracted by the association rule, and
their minimum confidence was between 0.63 and 0.91. They achieved
an overall accuracy of 75% based on 12 private projects from 2003 to
2004. However, three risky projects were still classified incorrectly as
not risky projects.

Three known models were developed from the OMRON dataset to
build predictive models for the risky nature of a project. Unfortunately,
these approaches all have the same issue that some risky projects are
regarded as not risky. Therefore, there is considerable interest in using
NN for the same purpose.

3. Material and methods

3.1. OMRON dataset

The OMRON database was used for this research. The dataset was
collected by the Software Engineering Process Group (SEPG) of
the Social Systems Solutions Business Company (SSBC) for the
OMRON Corporation, to better predict risky projects (confusion-
prone projects). This dataset comprises 40 valid projects completed
in the past and 24 attributes (22 project risk factors and 2 project
background features). These 22 project risk factors comprise five
viewpoints: (1) requirements (Reqm), (2) estimations (Estm),
(3) planning (Plan), (4) team organization (Team), and (5) project
management activities (Prma).

A risky project is defined as exceeding the budget and lacking
control during project implementation; it is represented by the
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