
A two-stage modelling architecture for distributed control of real-time industrial
systems: Application of UML and Petri Net

Francesco Basile ⁎, Pasquale Chiacchio, Domenico Del Grosso
DIIIE, Università di Salerno, Italy

A B S T R A C TA R T I C L E I N F O

Available online 9 April 2008

Keywords:
UML
Petri Net
Object-Oriented paradigm
Industrial automation

The use of UML in the design process of distributed automation systems is here proposed. UML is used to
formally express system's requirements, model the uncontrolled system and design the controlled one. It is
here proposed a domain transformation: to go from the informal description to UML and from UML to PN
models. In this way the capability to describe the system behavior is fully exploited, while the system
analysis can be more properly performed in PN domain.
Furthermore, it is to show the possibility of conferring intelligence to real objects, even to immaterial objects,
so that they can cooperate to fulfil the desired tasks in a distributed plant. To illustrate the methodology a
real case study is used.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

One important feature of modern automation systems is their
distributed nature which allows to use low-cost simple devices but
requires additional efforts to manage their coordination. Moreover, to
improve productivity, the optimization of resources must be carried out
on-line.

For both aspects, theavailabilityofmodels of theuncontrolled system
andof the control devices is a primary need. At this aim, in this paper it is
shown that theUnifiedModeling Language (UML) canplay a crucial role.

UML is seen to be useful in several stages of the distributed control
system's design, making it faster, cheaper and more effective (see [1]).
Moreover, UML is an effective tool to derive models that can be used
for simulation and design purposes (see [2–4]).

UML has been derived in the software industry to describe user's
requirements and speed up the code generation process (see [5,6,2,7–
9]). UML is a formal graphic tool used to describe the structure and the
behavior of a software system conceived within the object oriented
paradigm. It has been developed in order to provide a design tool to
visually express concepts which are common to object oriented pro-
gramming (“a picture is worth a thousandwords” — [10]). Commercial
developing systems are available to translate UML diagrams directly
into code for the most popular object oriented programming
languages.

Other works have already demonstrated that UML can also be
used to model production phases in industrial systems. As a matter

of fact, object oriented models can be used to represent production
processes when:

• real systems are complex;
• relations amongparts cannot be expressed throughmathematical laws;
• many process components (parts, machines, process) have
• common characteristics;
• the process is distributed;
• commercial software is unable to capture complex systemdynamics.

In the real word it is usual to start a model building process from an
informal description of the components of a system and of the
interactions among them in terms of events, states and constraints. It
could be useful to have a tool to build a representation of all its feasible
behaviors and the set of rules that automate the translation of behaviors
into a different operational domain, since behavioral traces are not very
useful as analysis or control synthesis framework. It is here proposed a
behavioral specification based on the event sequences of a process,
whereas the operational domain is the PN formalism. Thus in building
complex model we have two steps: from the informal description to
UML and from UML to PN models (domain transformation).

In the following the reader is assumed to be acquainted with Petri
Nets (PNs). For further details, it can be referred to [11].

PNs [11] are widely used to model and analyze industrial systems.
The reasons are their formal semantics, graphical nature, expressive-
ness, the availability of analysis techniques to prove structural prop-
erties (invariance properties, deadlock, liveness, etc.) and the
possibility to define and evaluate performance indices (throughput,
occupation rates, etc.). Nevertheless building PN models of complex
systems is a not easy and error prone task. Moreover, since the con-
figuration of industrial systems may change during the system life-
time, it is also important to define a modeling approach which

Computer Standards & Interfaces 31 (2009) 528–538

⁎ Corresponding author.
E-mail address: fbasile@unisa.it (F. Basile).

0920-5489/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.csi.2008.03.021

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r.com/ locate /cs i

mailto:fbasile@unisa.it
http://dx.doi.org/10.1016/j.csi.2008.03.021
http://www.sciencedirect.com/science/journal/09205489


promotes component reuse. In this case it could be useful to combine
an automatic model synthesis with a modular approach.

Furthermore, in PN domain [12] the controller synthesis paradigm
can be adopted from control theory for continuous systems. Given a
model of the plant dynamics and a specification for the desired closed
loop behavior, the objective is to synthesize a controller to achieve the
specifications. In this approach there is a clear distinction between the
plant and the controller and the information flow between the plant
and controller is modeled explicitly.

Finally, i.e. using UML to model industrial systems, it is possible
conferring intelligence to real objects, even to immaterial objects. As a
matter of fact, real objects are part of a distributed reality but usually
have no skill. If intelligence is provided to them, they become actors of
the control system thus cooperating to fulfill the requirements.

UML is a good mean to realize this idea, by modeling the real
objects (material or even immaterial) as Classes1, bringing them into
an Object-Oriented framework. The methods of the classes model the
way real objects interact to realize the control system.

To illustrate the idea reference to a real case study will be made
throughout the paper.

In particular, the energy management of an industrial system is
considered. It will be shown that the introduction of the “smart
energy” object will help designing a management system to monitor
and manage energy consumers thus optimizing power consumptions
of the plant and saving energy. With reference to the case study, by
modeling energy as classes, it is possible to declare the behavior that
they have to assume in the Distributed Control System (DCS), defining
a set of attributes, methods, relationships and associations, and thus
make themselves intelligent components of their respective systems.

2. Background

In this section the basic concepts of UML useful in this paper are
briefly recalled. The reader can find further details in [13,14,1].

UML is a visual language for specifying, modeling, designing and
documenting a computer system, based on the Object-Oriented
paradigm. UML is an Object Management Group (OMG) standard
consisting of a collection of diagrams (see Fig. 1) that offer multiple
model views of a system.

Several open source (Visual Paradigm suite [15], Star UML [16],
Eclipse [17]) or commercial (Altova® [18], IBM®Rational®Software
Modeler [19]) UML tools exist. The environment chosen in this work is
the open source StarUML. A sreenshot is reported in Fig. 2.

UML allows analyzing the application's requirements and design-
ing a solution that meets them, independently from the rendering to a
specific technological platform. UML is not a programming language
but thanks to specific tools it is often possible to automatically obtain
data structures starting from a UML diagram.

In UML each model corresponds to a specific aspect of reality and
through the combination of all diagrams a complete description of the
entire system is provided. UML's Object-Oriented nature makes it
particularly suited to the modeling of real world objects and aspects.
The concept of Object is indeed borrowed just from the real world,
thus UML can describe, in a formal and standard way, a concrete
system or a productive process.

Fig. 1 shows the complete taxonomy of UML diagrams.
Diagrams are subdivided in:

• Structure diagrams;
• Behavior diagrams including Interaction diagrams.

The main difference among these two categories is how they
describe reality. Structure diagrams show it from a static point of view
and relationship among diagram's entities are constant in time.

Behavior diagrams represent how the described process flows
through components, users and in general through the system.
Interaction diagrams show communication and temporal properties
of the system, from an operational point of view. Both behavior and
interaction diagrams describe the system's dynamics.

In the following a brief description of some structural and behavior
UML diagrams is proposed.

Class diagrams. A class diagram is used to describe parts of a
system, static relationship between them, their attributes, methods or
functionalities and their belonging to subsystems.

Use case diagrams. A use case diagram contains actors of the
system, use cases and actions that they can perform. It shows the
functional relationship existing among them and with other func-
tionalities of the system.

State diagrams. State diagrams are used to show the state changes
of the system and the achievement of certain situations, usually at a
class level.

Activity diagrams. The activity diagrams are usually used to analyze
the behavior of complex use cases and to show interactions among
them.

Sequence diagrams. Sequence diagrams show temporal interactions
among actors and objects, which occurs through messages, to make
clear the control flow into the system. They model the behavior of a
system at a high level, at which only instance of classes (objects) and
actors exist, to document how specific use cases are solved.

In Fig. 3 several connectors, which are kinds of relationship among
elements of diagrams, are shown with a short description.

3. UML in automation

UML is a non-proprietary modeling and design tool that offers an
Object-Oriented modeling framework. In automation methodological
aspects of UML have been used within several applications for
modeling as well as simulation and implementation purposes:
modeling and implementation of object relational databases for the
traceability in batch process [20]; specification and validation of
scheduling policies in agile production systems [21]; modeling and
implementation of production control systems [2]; design and
implementation of simple network management protocol agents for
remote control [8]; modeling and optimization of DCSs based on the
industrial bus CAN [4]; modeling and validation of mechatronic
systems [22]. The Object-Oriented approach is usually considered a
basic principle for manymodeling, analysis and design methodologies
in various engineering areas, and UML is considered a “drastic way to
revolutionize and improve the efficiency of software development
process”, allowing its easy modification, extension and maintenance
[23]. Moreover it is used to support the Metamodeling2 of reality and
the Model-Driven development of the control system. UML's multiple

1 A Class is a programming language construct that is used to group related instance
variables and methods.

Fig. 1. UML diagrams taxonomy.

2 While a model is a simple abstraction of the real world, a Metamodel is an
abstraction too, which includes properties and methods for the model itself. Through a
Metamodel it is possible to express additional semantics of existing information and
specify methods and functions.

529F. Basile et al. / Computer Standards & Interfaces 31 (2009) 528–538



Download English Version:

https://daneshyari.com/en/article/454266

Download Persian Version:

https://daneshyari.com/article/454266

Daneshyari.com

https://daneshyari.com/en/article/454266
https://daneshyari.com/article/454266
https://daneshyari.com

