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a  b  s  t  r  a  c  t

We  use  the  state-space  approach  to  the  logistic  population  growth  model  to update  our  knowledge  of  a
population  of  marine  shrimp  off  the  Chilean  coast.  The  unobserved  state  is the annual  shrimp  biomass,
and  the  observation  is  the  mean  catch  per  unit  effort.  The  observation  equation  is linear,  and  the state
equation  is nonlinear.  The  models  include  normal,  student-t,  skew-normal,  and  skew-t  distributions  for
additive  observation  errors;  and  log-normal,  log-t,  log-skew-normal,  and  log-skew-t  distributions  for
multiplicative  observation  errors.  We  use  Bayesian  approach  to obtain  inference,  and  the posterior  dis-
tributions  are  approximated  using  Markov  chain  Monte  Carlo  methods.  Deviance  Information  Criteria  are
lower in  models  considering  log-skew-normal  and  log-skew-t  observation  errors.  Furthermore,  consid-
ering the  posterior  predictive  distributions  of  the autocorrelations  of the  observation  errors,  these  two
models  work  best for the  analyzed  data  set.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Biomass dynamic models (also known as production models or
surplus production models) have a long history in fisheries science
and have provided a key basis leading to the popularity of maxi-
mum  sustainable yield (MSY) and its associated biomass (BMSY) as
biological reference points for fisheries management (Punt, 2003).
Such models can be used in situations when the only available data
are time series of abundance indices and landings (i.e., harvesting).
Surplus production models relate to Russell’s (1931) formulation of
stock dynamics and, in a difference equation or discrete form, have
the general structure:

Xt+1 = Xt + g(Xt) − Ht, Xt ≥ 0, Ht ≥ 0, t = 0, 1, . . .,  (1)

where Xt is the biomass of the population at time t (unobser-
vable state), g(Xt) is the growth function, and Ht is the biomass
caught during time t. The logistic growth model is the most used
formulation of biomass dynamic models (Haddon, 2001). The logis-
tic form of Schaefer (1954) assumes that the production curve
is symmetrical around a biomass BMSY that can produce a maxi-
mum sustainable yield. Other options of growth functions include
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Gompertz, Richards, Ricker, and Beverton-Holt, among others
(Birch, 1999; De Lara and Doyen, 2008). For simplicity, in this paper,
we consider the logistic growth model of Schaefer (1954), which is
represented by the differential equation:

g(Xt) = dXt

dt
= rXt

(
1 − Xt

K

)
≡ rXt − rX2

t

K
, r > 0, K > 0, (2)

where r is the intrinsic rate of population growth and K is a param-
eter that corresponds to the unfished equilibrium population size,
known as carrying capacity (Krebs, 1985). The difference equation
version of the model, considering the presence of harvesting and
additive process noise, is:

Xt+1 = Xt + rXt

(
1 − Xt

K

)
− Ht + ut, (3)

where ut are independent and identically distributed random vari-
ables with zero mean and finite variance (i.e., a white noise process).
Several useful management quantities can be derived from sur-
plus production models (Hilborn and Walters, 1992; Brodziak and
Ishimura, 2011). Three of them are MSY, biomass that maximizes
surplus production (BMSY), and harvest rate that maximizes surplus
production (HMSY):

MSY = rK

4
, BMSY = K

2
, HMSY = r

2
. (4)
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When process noise is assumed to be multiplicative, the state
equation becomes:

Xt+1 =
(

Xt + rXt

(
1 − Xt

K

)
− Ht

)
eut . (5)

A common assumption is that an abundance index is propor-
tional to the biomass, i.e.:

Yt = qXt + vt , Yt ≥ 0, q > 0, (6)

where Yt is a relative biomass index, q is a constant of proportion-
ality known as the catchability coefficient, and vt are independent
and identically distributed random variables (observation error).
In practice, Yt is often the mean fishing yield, calculated as the
total catch divided by the total fishing effort; this may  be calculated
from commercial fishing data or research surveys. If the observa-
tion error is assumed to be multiplicative, the observation equation
becomes:

Yt = qXte
vt . (7)

Several approaches can be used to estimate the unobservable
states and parameters of such models. The main approaches are:
(1) observation error models, (2) process noise models, and (3) pro-
cess noise and observation error models (Polachek et al., 1993; de
Valpine and Hastings, 2002; Punt, 2003). In the first approach, the
only source of uncertainty is due to observation or measurement
errors, i.e., the equation relating the observable with the unobserva-
ble states has a random component, whereas the process equation
is exact. In the second approach, the only source of uncertainty is
due to process noise, i.e., the observation equation is exact. The
third approach admits uncertainty in both equations and can be
formalized through state-space models (West and Harrison, 1997;
Durbin and Koopman, 2001; Shumway and Stoffer, 2011). In this
representation, the time evolution of the system under study is
assumed to be determined by an unobservable vector, which is
associated with a series of observable vectors. If the equations are
linear and the errors are Gaussian, the model is a Linear Gaussian
State-Space Model (LGSSM), and the estimation problem can be
solved with the well-known Kalman filter (Petris et al., 2009).

A more flexible formulation for the state space model can be
done considering a more general functional and random structure,
as following:

Consider a state equation: Xt+1 = ft(Xt , �t), �t ∼ gl(�t), t = 0, 1,
. . .,
an observation equation: Yt = ht(Xt , �t), �t ∼ gr(�t), and
the initial condition: (X1|D0) ∼ gl(�0),

where Xt is a p-dimensional state vector, �t is the l-dimensional
process noise, ft: R

p × R
l → R

p is a transition function, Yt is a m-
dimensional observation vector, �t is the r-dimensional vector of
observation error and ht: R

p × R
r → R

m is an observation func-
tion. Moreover, �t ’s and �t ’s are white noises and have known
probabilities densities functions gl(�t) and gr(�t). Usually the vec-
torial functions ft and ht are known but can depend on unknown
parameters.

In our particular case, ft(Xt , �t) is given by (3), and ht(Xt , �t) is
given by (6) and (7). To complete the model specification, it is nec-
essary to propose probability distributions for the errors terms. In
marine populations, the standard specification for such models is
the log-normal distribution for the observation errors and process
noise terms (Polachek et al., 1993; Meyer and Millar, 1999; Punt,
2003). However, given the asymmetry of the ecological variables,
we opt for alternatives that can better accommodate asymmetry.
Outliers tend to have a large influence in frequentist and Bayesian
models based on normal distributions (Berger, 1994). Chen and
Fournier (1999) evaluate the impacts of outliers on the derivation

of posterior distributions in a Bayesian analysis of von Bertalanffy’s
growth model. In a similar approach, Chen et al. (2003) review
three approaches that can be used to develop robust frequentist or
Bayesian stock assessment methods. Jiao and Chen (2004) couple
a generalized linear model with the biomass dynamic model using
an observation error estimator with normal, log-normal, Gamma,
and Poisson distributions. All these approaches deal with either the
presence of outliers or skewed data but not with both character-
istics. More flexible classes of distributions have been proposed in
the literature to deal with the issues of asymmetry and outliers (see
Genton, 2004). One such class is the scale mixtures of skew-normal
(SMSN) distribution (Branco and Dey, 2001). Contreras-Reyes and
Arellano-Valle (2013) propose SMSN distributions for modeling the
age-length relationship of cardinalfish. They consider a non-linear
regression model following the statistical methodology proposed
by Lachos et al. (2011, 2013), which uses the maximum likelihood
approach. Our modeling approach is similar to theirs, but in the
context of dynamic models.

This study considers the following alternatives for the observa-
tion errors: additive normal, student-t, skew-normal, and skew-t
error components and the multiplicative versions of these models,
i.e., log-normal, log-student-t, log-skew-normal, and log-skew-t.
We conduct a Bayesian inference with the logistic growth model
with those observational error terms and apply it to data from a
population of marine shrimp off the Chilean coast. The objectives
of this study are to present the Bayesian state-space representation
of a biomass dynamic model in the context of the SMSN class of dis-
tributions and to compare the performance of the several families
of this class in terms of the data set of Chilean shrimp (Heterocarpus
reedi). In the case of multiplicative observation errors, we compare
the performance using a log-transformation. This study is orga-
nized as follows. Section 2 presents the models used in the Bayesian
approach, including the families of skew-normal, student-t, and
skew-t distributions. Extensions for the log versions are introduced,
and some hierarchical forms derived from their stochastic repre-
sentations are described. We  also show the Bayesian formulation
of the logistic growth model in state-space form. The prior distri-
bution and the likelihood equation for the proposed models and
the MCMC  algorithm used to obtain the posterior distribution of
the quantities of interest are presented as well. Section 3 presents
our approach to the study of the data on annual catch per unit of
effort (CPUE) and landings from a shrimp fishery off south-central
Chile. Finally, Section 4 contains a brief discussion about our model-
ing strategy and other possible approaches. The Appendix contains
some characteristics of the random variables used in this article.
There, we explain the criteria used to analyze the results of the
inferential process, and we provide graphics of the trace iterations
of the MCMC  procedure for each model parameter.

2. Materials and methods

2.1. Asymmetrical and heavy-tailed distributions

The usual notations, � and �,  respectively, for the probabil-
ity density function (pdf) and the cumulative distribution function
(cdf) of a standard normal random variable are considered here.
Also, t� and T� indicate the pdf and cdf of a standard Student-t
distribution with � degrees of freedom (df).

One flexible class of distributions is the skew-normal family of
densities (SN). The first systematic treatment of the skew-normal
class in the scalar case was  given by Azzalini (1985, 1986). A random
variable Y has a skew-normal distribution if its pdf is:

p(y) = 2
�

�
(

y − �

�

)
�
(

�
y − �

�

)
, y ∈ R, � ∈ R, � ∈ R, � > 0

(8)
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