
Fisheries Research 166 (2015) 129–139

Contents lists available at ScienceDirect

Fisheries  Research

j ourna l ho me  page: www.elsev ier .com/ locate / f i shres

Model  selection  and  multi-model  inference  for  Bayesian  surplus
production  models:  A  case  study  for  Pacific  blue  and  striped  marlin

Yi-Jay  Changa,∗,  Jon  Brodziakb,  Joseph  O’Malleyb,  Hui-Hua  Leea,
Gerard  DiNardob,  Chi-Lu  Sunc

a Joint Institute for Marine and Atmospheric Research, University of Hawaii—NOAA Fisheries, Honolulu, HI 96818, USA
b NOAA Fisheries, Pacific Islands Fisheries Science Center, Honolulu, HI 96818, USA
c Institute of Oceanography, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 30 March 2014
Received in revised form 29 August 2014
Accepted 30 August 2014
Handling Editor A.E. Punt
Available online 18 October 2014

Keywords:
Bayesian hierarchical surplus production
model
Model selection uncertainty
Deviance information criterion
Multi-model inference
Billfish

a  b  s  t  r  a  c  t

Stock  assessment  typically  involves  developing  a set  of  alternative  models,  fitting  each  to the available
data,  and  then  selecting  the  one  that  gives  the  most  accurate  estimates  of  management  quantities  of
interest.  In  this  context,  it is important  to  consider  model  selection  uncertainty  because  ignoring  it can
lead to  unreliable  estimates  and  overconfident  inferences.  For this  study,  four  Bayesian  surplus  production
models  with  symmetric  or  asymmetric  production  functions  and  either  a  constant  or  hierarchical  time-
varying  intrinsic  growth  rate  (r) were  developed  using  data  for Pacific  blue  marlin  (Makaira  nigricans)  and
Western  and  Central  North  Pacific  striped  marlin  (Kajikia  audax).  The  uncertainty  resulting  from  model
selection  was  evaluated  using  Monte  Carlo  simulation  techniques  to  examine  the consistency  of model
estimates  within  (self-tests)  and  among  (cross-tests)  the  alternative  models.  Specifically,  these  tests
evaluated  the  performance  of the  deviance  information  criterion  (DIC)  and  Bayesian  model  averaging
(BMA).  The  results  of the  simulation  tests  suggested  that  mis-specification  of  time-varying  r  can  lead  to
large  estimation  errors for biomass  and  management  quantities  and  that  DIC  may  not  reliably  identify
the  true data-generating  model.  Although  BMA  did  not  provide  more  accurate  point  estimates  than  just
selecting  the data-generating  model,  it did  provide  a more  accurate  characterization  of uncertainty  in
model  results.  Our  study  shows  the  value  of  using  simulations  to  evaluate  model  performance  and  to
account  for  model  selection  uncertainty.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

To develop a stock assessment, fishery scientists usually build
several alternative hypotheses or models, fit the models to the
available data, and decide which alternative (“best”) model is
likely to give the most accurate estimates of the current status
of the stock relative to management targets (NRC, 1998; Hilborn
and Walters, 1992). For example, alternative hypotheses could
involve the choice of production curve for biomass dynamics mod-
els (Prager, 2002) or the choice of stock–recruitment relationships
and selectivity functions for statistical catch-at-age (SCA) mod-
els (McAllister and Kirchner, 2002; Punt et al., 2014). The single
“best” model is then usually selected using statistical measures of
goodness-of-fit or model selection criteria.
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Model selection is an important aspect of stock assessment
because estimated quantities of interest can be sensitive to model
structure. For example, the ratio of the reference biomass to the
carrying capacity derived from biomass dynamics models is pre-
determined by the choice of production curve and intrinsic growth
rate (Hilborn and Walters, 1992). Consequently, ignoring model
selection uncertainty can lead to overconfident inferences if the
choices are artificially limited (Hoeting et al., 1999; Burnham and
Anderson, 2002).

Model goodness-of-fit tests (e.g., F-ratio tests) or model selec-
tion criteria (Akaike Information Criterion, AIC, Akaike, 1973;
Bayesian Information Criterion, BIC, Schwarz, 1978) have been
widely used to select among fisheries assessment models. For
example, Prager (2002) used an F-ratio test to choose between a
logistic surplus production and a generalized surplus production
model. Butterworth et al. (2003) used AIC to compare assess-
ment model configurations that assumed selectivity was constant
or changing over time. Helu et al. (2000) evaluated the perfor-
mance of AIC and BIC to assess model selection in Stock Synthesis
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models. For Bayesian methods, model selection has traditionally
been based on Bayes factors (Aitkin, 1991) and more recently on
the deviance information criterion (DIC, Spiegelhalter et al., 2002).
Wilberg and Bence (2008) explored DIC to select the best SCA model
and suggested that DIC performed well at choosing the structurally
appropriate model. Simulation testing has been also used to evalu-
ate the performance of stock assessment models, through self-tests,
i.e., when the structure of the assessment model matches that of the
data-generating model, and cross validation analyses (NRC, 1998;
Deroba et al., 2014). Although statistical model-fitting criteria, such
as root mean square error, AIC, BIC, and DIC have been applied in
many studies, relatively few studies have directly evaluated the
performance of these criteria (Helu et al., 2000).

Although most assessments identify a single “best” assessment
configuration, it may  be advisable to apply multi-model inference
using model averaging based on weighted support from a set of
competing models (Hilborn and Mangel, 1997; Hoeting et al., 1999;
Burnham and Anderson, 2002). Parameter estimates or predictions
obtained from model averaging can be robust, in the sense that
model selection bias can be reduced and model selection uncer-
tainty can be taken into account. Multi-model inference using
Bayesian model averaging (BMA) has been proposed as a means
for assessing population growth for the endangered dromedary
pearly mussel (Dromus dromas) (Jiao et al., 2008), estimating the
stock–recruitment relationship for the walleye (Sander vitreus)
fishery (Jiao et al., 2009a), estimating the probable status of a fish-
ery resource under assessment scenario uncertainty (Brodziak and
Piner, 2010), and standardizing CPUE of bycatch species (Brodziak
and Walsh, 2013).

Use of Bayesian hierarchical frameworks for stock assessment
modeling is also becoming more common. For example, Bayesian
state-space surplus production models including multilevel pri-
ors (hierarchical models) were developed to simulate variability
in population growth rates of hammerhead sharks (Sphyrna spp.)
along the Atlantic and Gulf of Mexico coasts of the United States
(Jiao et al., 2009b, 2011); similar models were also applied to
the Deep 7 bottomfish complex of the Main Hawaiian Islands
(Brodziak et al., 2011). Hierarchical model structures have also
been used to simulate time-varying catchabilities (Wilberg et al.,
2010).

The objectives of this study were to examine how model
estimates are related to model selection uncertainty, to test
the performance of DIC in model selection, and to evaluate the
BMA  approach. We  applied Monte Carlo simulation techniques
to address these issues using assessment data for blue marlin
(Makaira nigricans) in the Pacific Ocean and striped marlin (Kajikia
audax) in the Western and Central North Pacific Ocean (WCNPO).
A set of simulation tests was conducted for each species based
on four Bayesian state-space surplus production models using
pseudo-datasets generated from the same structural model as
the assessment model (self-tests) and when the data-generating
and assessment models differed (cross-tests). These models had
different structural assumptions related to production curves
and/or population intrinsic growth rates (hierarchically or non-
hierarchically structured). The results of simulation tests were
compared within and between species. The appropriateness of
applying these statistical approaches for stock assessment model
selection and the practical implications for management are dis-
cussed.

2. Methods

This study consisted of two major parts: (1) fitting four
Bayesian surplus production models to the Pacific blue marlin and
WCNPO striped marlin stock assessment data; and (2) conducting a

simulation study to evaluate consequences of model mis-
specification and to test the performance of DIC and BMA.

2.1. Data used

Fishery catch data used were gathered from the most recent
assessments of Pacific blue marlin and WCNPO striped marlin con-
ducted by the Billfish Working Group of the International Scientific
Committee for Tuna and Tuna-like Species in the North Pacific
Ocean (ISC) (ISC, 2012, 2013). The catch data were used to model
the effects of fishery removals from the Pacific blue marlin and
WCNPO striped marlin stocks during 1952–2011 and 1975–2009,
respectively.

Standardized catch-per-unit-effort (CPUE) indices were also
gathered from the most recent stock assessments (ISC, 2012, 2013).
The Pacific blue marlin CPUE indices consisted of two Japanese dis-
tant water longline CPUE series (1975–1993 and 1994–2011) and
two Taiwanese distant water longline CPUE series (1979–1999 and
2000–2011). The two time blocks of CPUE for each fishery corre-
sponded to the changes in fishing practices. The WCNPO striped
marlin CPUE indices consisted of three Japanese distant water long-
line CPUE series (1975–1986, 1987–1999, and 2000–2009). These
CPUE indices were selected on the basis of examination of residuals
and total likelihoods (ISC, 2012, 2013).

2.2. Bayesian surplus production models

Surplus production models were fitted using a Bayesian state-
space approach with explicit observation and process error terms
(e.g., Meyer and Millar, 1999; Punt, 2003). We  employed a time-
varying hierarchical surplus production model with process error,
similar to Brodziak and Ishimura (2011), to represent temporal
fluctuations in biomass based on density-dependent processes and
fishery harvests:
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where Bt − 1 and Ct − 1 denote exploitable biomass and catch, respec-
tively, for year t − 1; K is the carrying capacity of the population;
rt is the intrinsic population growth rate for year t (i.e., the popu-
lation growth rate was allowed to vary annually in some models);
and M is the production shape parameter, which determines where
surplus production peaks as biomass varies relative to carrying
capacity. The process errors (�t) were assumed to be independent
and lognormally distributed random variables, �t = eUt , where Ut

were random normal variables with mean 0 and variance �2. A
reparameterization which expressed the annual biomass as a pro-
portion of carrying capacity (Pt = Bt/K) was used to improve the
efficiency of the Markov Chain Monte Carlo (MCMC) algorithm
(Millar and Meyer, 2000). Therefore, the state equations for the
initial time period (t = 1) and subsequent periods (t > 1) were
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The observation model related the unobserved states, Bt, to the
relative abundance indices, Ii,t, which were observed with error.
We incorporated the selected CPUE indices into a single estima-
tion model by specifying a separate observation equation for each
index. Each observation equation assumed that the CPUE index was
proportional to exploitable biomass

Ii,t = qiKPtεi,t (3)

where Ii,t is the relative abundance for index i at time t; qi is the
catchability coefficient for index i, which describes the effective-
ness of each unit of fishing effort; and εi,t is a lognormal random
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