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a  b  s  t  r  a  c  t

Standard  Brownie  mark-recapture  models  follow  tagged  cohorts  of  fish  meaning  an age-based  setting  is
required,  but  there  are  many  populations  for which  length-at-age  cannot  be  characterised.  This  paper
details  the  derivation  of  a length-based  Brownie  mark-recapture  model,  with  specific  application  to
Indian  Ocean  skipjack  tuna.  Instead  of  following  cohorts  (often  tagged  a number  of times)  the  model
follows  the  recapture  history  of  animals  tagged  in a given  length  class  and period.  For  Indian  Ocean
skipjack  reporting  rate  uncertainty,  related  to mixing  assumptions,  is  accounted  for  using  two  extreme
options.  Various  mortality  model  structures  were  explored  and  length-specific  natural  mortality  and  a
separable  model  for  fishing  mortality  were  ultimately  selected.  Absolute  values  of  fishing  and  natural
mortality  depend  strongly  on the  reporting  rate  assumptions,  with  total  mortality  being  far  more  robust
to  assumptions  about  reporting  rates.  Estimates  of  fishing  mortality  were  highest  between  mid  2006  and
mid 2008,  reducing  thereafter  to levels  estimated  in late  2005/early  2006.

© 2014  Published  by  Elsevier  B.V.

1. Introduction

The Brownie mark-recapture model (Brownie et al., 1985) has
often been used when estimating both natural and fishing mortal-
ity rates from mark-recapture data (Brownie et al., 1985; Polacheck
et al., 2006). The age-based population dynamic setting for the
Brownie model has, to date, made it difficult to apply to popula-
tions that are either difficult or impossible to age, and length-based
models have formed the core structure of stock assessments in such
cases (Breen et al., 2003; Hillary et al., 2010; Punt et al., 1997).
The assessment of tuna stocks is largely dependent on fishery-
dependent data, such as catch composition and CPUE data. Often,
the sampling properties of the catch composition are not well
known, with the degree to which the CPUE reflects relative abun-
dance also a major issue (Harley et al., 2001). This issue is even
more pressing for skipjack tuna in the Indian ocean as there are
no really reliable relative abundance series with which to con-
duct a formal stock assessment. Tagging data can be characterised
as fishery semi-dependent and, where available and valid, they
provide arguably the most informative observations relating to
mortality rates and population abundance (Polacheck et al., 2006).

∗ Corresponding author. Tel.: +61 03 62325452
E-mail addresses: Rich.Hillary@csiro.au (R.M. Hillary), Paige.Eveson@csiro.au

(J.P. Eveson).

Hence, they can provide estimates of variables from which we can
infer something about the status of the stock. In this paper we
derive a length-based formulation of the Brownie mark-recapture
model and apply it to Indian Ocean skipjack tuna mark-recapture
data collected as part of the Regional Tuna Tagging Project of
the Indian Ocean (RTTP-IO) (Hallier and Fonteneau, 2015). The
example serves as both a proof of concept of the proposed model
but also to estimate both fishing and natural mortality rates for
Indian Ocean skipjack tuna over the years covered by the data
(2006–2008).

The length-based Brownie formulation requires a transition
matrix specifying the probability of an animal transiting from one
length class to another in a single time step. The growth curve esti-
mated for Indian Ocean skipjack from the RTTP-IO tagging data
(Eveson, 2015) is used to estimate the growth transition matrix
(Hillary, 2011; Punt et al., 2009), where both individual variation
in growth and uncertainty in exact length structure are dealt with
simultaneously. In the model a number of structural possibilities
are explored for both fishing and natural mortality to investigate
how time and/or fish length play a role in these key parame-
ters. Although the base distributional assumption for the recapture
model is multinomial, the presence of over-dispersion (variabil-
ity beyond that assumed in the likelihood) is investigated using
Bayesian bootstrap (Rubin, 1987) analyses on the standardised
residuals.

In mark-recapture analyses time-specific relative changes in
reporting rate are required to be able to estimate total mortality,
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but to estimate fishing and natural mortality separately absolute
estimates of reporting rate are required. Reporting rate uncertainty
is a key issue for Indian Ocean skipjack tuna tagging data, driven
largely by a lack of clear information on how well mixed the tagged
animals are in the wider fishing grounds beyond those of the purse
seine fishery, where the overwhelming majority of recaptures come
from, and for where we have actual reporting rate estimates. The
complex interplay between the estimates of fishing, natural and
total mortality – driven by absolute and relative differences in time-
specific reporting rates – is explored using two “extreme” options.
The first assumes the recaptures to be mixed only into the purse
seine grounds, suggested by the very low return rates in other fish-
eries (Carruthers et al., 2015); and the second assumes them to be
fully mixed into the whole fishery.

2. Materials and methods

2.1. Data

The general features of the skipjack tagging data can be found in
Hallier and Fonteneau (2015). For the analyses undertaken in this
paper, there were 74,301 tags released with 10,290 tags recovered –
the overall recapture percentage being just under 14%. The major-
ity of tags (over 85%) were released on animals between 45 and
60 cm,  and around 80% of these were released in the years 2006 and
2007. The majority of recaptures (over 95%) are of animals between
45 and 65 cm,  and around 80% of the recaptures are in the years
2006–2008. Over 95% of the recaptures (at least those reported)
came from the purse-seine fishery, which is the only fishery for
which direct reporting rate estimates are available. Thus, we omit
any non-purse-seine recaptures in our analysis and assume that
the reporting rate for these other fisheries is zero, which is not an
unreasonable assumption (Carruthers et al., 2015).

2.2. Length-based dynamics

While not essential, it usually makes sense to discretise length
into a set of length classes, so l ∈ {�1, . . .,  �M}. For a given time inter-
val, �, one is assumed to have already estimated a growth transition
matrix �i,j (Punt et al., 1997; Hillary, 2011), where the i, jth entry is
the probability of being in length class j if you were in length-class
i in the previous period and we assume a “closed” system so that∑

j�i,j = 1. In the simplest case the dynamics of a population Nt,l are
as follows:

Nt+�,l =
∑
k

Nt,k�k,le
−Mt,k−Ft,k . (1)

where M and F are the instantaneous rates of natural and fishing
mortality, respectively. The dynamics are updated so that the num-
bers in each length class are the total numbers of animals predicted
to grow into that length class and survive from the previous year,
which is a slightly different to the age-based and simpler a → a + 1
structure. This is the part which causes the added complication for
the application of a Brownie approach because a group of fish in a
single length class do not progress from one length class to another
over time; they spread over an (often increasing) variety of length
classes.

2.3. Defining a growth transition matrix

There are a number of ways to obtain a growth transition matrix
(there is no unique matrix as it depends on both method and
length partition). Historically, this has been done by calculating
the probability with which animals of a given length grow – a
specified amount of time later – into the other length classes.

The uncertainty due to process error (often via proxies for indi-
vidual growth variation) is usually assumed to be the main driver
(Punt et al., 1997, 2009). These methods usually ignore parametric
variation in the growth parameters and uncertainty in the initial
length (the midpoint of the given interval is often assumed). A new
measure-theoretic method was  proposed in Hillary (2011) that can
accommodate both parametric and individual variation in growth
and deals with the implicit uncertainty related to the use of dis-
crete length intervals, instead of length as a continuous variable.
This method has associated complexities as one obtains a distribu-
tion of growth transition matrices, not a single matrix. This can be
difficult to deal with in moderately complex statistical models such
as the Brownie.

If the main sources of uncertainty are individual variation in
growth and the nature of the length intervals themselves, and not
parametric uncertainty, then a workable compromise would per-
haps be to include the key features of both approaches. This is what
was done for skipjack whereby a single transition matrix was con-
structed by integrating over both variation in asymptotic length �∞
and the distribution of possible lengths in any given length class.

In a general setting, suppose we can define a probability distri-
bution for the length, l′, of a given animal at time t + �, given it was
of length l at time t: p(l′|l) (in principle this is defined through the
distribution of the growth parameters and growth function but in
this case just by the population-level distribution of �∞). The defi-
nition of the {i, j}th entry of the transition matrix, �i,j is as follows
(Hillary, 2011):

�i,j =
∫
k∈�j

p(k | l ∈ �i)dk, (2)

which is the probability of finding an animal in length class �j at
time t + � given it was  in interval �i at time t. The added complication
in defining the distribution in Eq. (2) is we  must also account for the
fact that the reference length l̃ ∈ �i will have its own  distribution.
Length intervals are not discrete points so selecting a single point
in �i will bias the results. To account for this we  must first define
the distribution of lengths in a given length class and integrate over
it, so that:

�i,j =
∫
k∈�j

∫
l∈�i
p(k | l)p(l)dldk. (3)

The integral in Eq. (3) appears complex for a given growth func-
tion (the VB log k function from Eveson (2013) was used), with the
distribution of �∞ (again see Eveson (2013)). In this work a uni-
form distribution for length in all partition elements was assumed
(although any suitable distribution is permitted) and Monte Carlo
methods can be used to efficiently generate the transition matrix
�.

Ten length bins (in cm)  were defined: 20–30, 30–40, 40–45,
45–50, 50–55, 55–60, 60–65, 65–70, 70–75 and 75–85. This choice
ensured that, for the assumed quarterly time-step (i.e. � = 0.25
years), the equilibrium distribution of animals in a simple per-
recruit system (and irrespective of the overall mortality rates) was
reasonably smooth. This does not mean a strictly monotonically
decreasing equilibrium abundance at length, as complex growth
and mortality models cannot guarantee this outcome. As a general
rule of thumb, while exploring a priori plausible mortality levels,
ensure that the length bins do not result in obvious discontinuities
or clear gaps in the length distribution, nor that length bins overlap
any potential growth change points for example. Poor choices of
length bins can have a serious effect on the resultant population
dynamics as there can be length bins that in theory no animals will
ever be found in, because the growth model predicts that within
the time interval � all animals will have by-passed this bin and
grown into the next ones. This causes serious conflict with animals
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