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a  b  s  t  r  a  c  t

Spatial  ecosystem  models,  such  as  OSMOSE,  have  become  integral  tools  in  achieving  ecosystem-based
management  for  their  ability  to  thoroughly  describe  predator–prey  dynamics  in  a spatially  explicit con-
text.  Distribution  maps,  which  define  the  initial  spatial  allocation  of  functional  groups  abundance,  can
have  a  large  effect  on  the  predator–prey  dynamics  that  spatially  explicit  ecosystem  models  simulate.
Here,  we  introduce  the  delta  GAM  approach  we  developed  to  be  able  to produce  distribution  maps  for
an OSMOSE  model  of the  West  Florida  Shelf  (Gulf  of  Mexico),  OSMOSE-WFS.  This  delta  GAM  approach
predicts  the  spatial  distribution  of  different  life  stages  of  the multiple  functional  groups  represented
in  OSMOSE-WFS  (‘life-stage  groups’)  at different  seasons,  over  the entire  Gulf  of  Mexico  (GOM)  shelf
including  areas  where  abundance  estimates  do not  exist,  using  different  research  survey  datasets  and
regional  environmental  and  habitat  features.  Our delta  GAM  approach  consists  of fitting  two  indepen-
dent  models,  a binomial  GAM  and  a quasi-Poisson  GAM,  whose  predictions  are  then  combined  using
the  delta  method  to  yield  spatial  abundance  estimates.  To validate  delta  GAMs,  bootstraps  are  used  and
Spearman’s  correlation  coefficients  (Spearman’s  �’s)  between  predicted  and  observed  abundance  values
are  estimated  and  tested  to  be  significantly  different  from  zero.  We  use pink shrimp  (Farfantepenaeus
duorarum)  to  demonstrate  our  delta  GAM  approach  by predicting  the  summer  distribution  of this  species
over  the  GOM  shelf  and  the West  Florida  Shelf.  Predictions  of  the  delta  GAM  reflect  existing  empirical
research  related  to pink  shrimp  habitat  preferences  and  predictions  of a  negative  binomial  GAM  pre-
viously  designed  for  the  GOM.  We  find  that  using  a delta  rather  than  a negative  binomial  GAM saves
significant  computation  time  at the  expense  of  a  slight  reduction  in  GAM  performance.  A  positive  and
highly  significant  Spearman’s  � between  observed  and  predicted  abundance  values  indicates  that  our
delta GAM  can  reliably  be used  to predict  pink  shrimp  spatial  distribution.  Spearman’s  �  was  also  pos-
itive  and  highly  significant  in every  life-stage  group  represented  in OSMOSE-WFS  and  season,  though
often  low.  Therefore,  delta GAMs  fitted  for the different  life-stage  groups  and  seasons  correctly  pre-
dict  qualitative  differences  between  low-  and  high-abundance  areas  and  are  deemed  appropriate  for
generating  distribution  maps  for OSMOSE-WFS.  The  delta  GAM  approach  we developed  is a  simple,  con-
venient  method  to create  distribution  maps  to be fed  into  spatially  explicit  ecosystem  models,  where
wide  spatial  and  taxonomic  coverage  is  desired  while  benefits  of  high  precision  estimates  are  lost  at
run-time.
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1. Introduction

Ecosystem-based management (EBM) of marine systems has
become a central paradigm throughout the world (Pikitch et al.,
2004; Garcia and Cochrane, 2005; McLeod and Leslie, 2009). Spa-
tial ecosystem models, such as Ecospace (Christensen and Walters,
2004; Walters et al., 2010), Atlantis (Fulton et al., 2004, 2007)
and OSMOSE (Shin and Cury, 2001, 2004), have become integral
tools in achieving EBM for their ability to thoroughly describe
predator–prey dynamics in a spatially explicit context. Within a
spatially explicit context, the predation mortality of functional
groups (i.e., groups of species sharing similar ecological niches
and life-history traits) becomes influenced by their degree of spa-
tial overlap with potential predators. Therefore, distribution maps,
which define the spatial allocation of functional groups abundance
or biomass at the start of simulations or at the beginning of each
time step, can have a large effect on the predator–prey dynamics
that spatially explicit ecosystem models simulate.

Fisheries management in the Gulf of Mexico (GOM) has recently
begun to embrace EBM through the development of a compre-
hensive Integrated Ecosystem Assessment program (Levin et al.,
2009, 2013; Samhouri et al., 2013). Within the GOM Integrated
Ecosystem Assessment program, several spatially explicit ecosys-
tem models have been designed, including an Atlantis model for
the entire Gulf of Mexico (Atlantis-GOM) and an OSMOSE model for
the West Florida Shelf (OSMOSE-WFS), to simulate predator–prey
dynamics and the potential impacts of management measures
in the GOM. One major challenge for developing Atlantis-GOM
and OSMOSE-WFS has been the construction of distribution maps
despite the availability of several large fisheries-independent sur-
vey databases.

We developed delta generalized additive models (GAMs; Hastie
and Tibshirani, 1990; Guisan et al., 2002) for predicting the spatial
distribution of different life stages of multiple functional groups
over the entire GOM shelf, which can then be used to define dis-
tribution maps for the OSMOSE-WFS model. In the following, we:
(1) briefly review how distribution maps have been produced and
utilized in spatially explicit ecosystem models to date, focusing on
the widely used OSMOSE and Atlantis models; (2) discuss the use of
GAMs to construct distribution maps for spatial ecosystem models;
and (3) give an outline of the content and objectives of the present
study.

1.1. Distribution maps in spatially explicit ecosystem models

Spatial ecosystem models usually explicitly consider a large
number of functional groups whose spatial distribution in the real
world can vary substantially within life stages and between sea-
sons. However, the generation of distribution maps for spatially
explicit ecosystem models is usually constrained by the availabil-
ity of survey data and the total number of samples available. Spatial
abundance and biomass data are typically collected for species of
high economic importance. Moreover, available spatial data gener-
ally cover only a fraction of the total habitat area used by functional
groups of interest. Given these limitations, a single, simple frame-
work is desired to produce distribution maps for the multiple
functional groups represented in spatial ecosystem models. The
spatial distribution of functional groups in an ecosystem model at
the start of simulations or at the beginning of each time step con-
stitutes an important step in capturing ecosystem dynamics. Fish
movements implemented after this step ultimately affect the pre-
dation mortality rates and diet composition of functional groups.

OSMOSE is a two-dimensional, individual-based, multi-species
model whose basic units (‘super-individuals’) are schools, which
consist of organisms belonging to the same functional group and
the same life stage, which have the same length, weight, and, at a

given time step, the same spatial coordinates (Shin and Cury, 2004,
2001). Schools are distributed in space at each time step using a set
of maps of presence/absence or density maps created for specific
functional groups, life stages and seasons. When the distribution
of schools remains static (within a season or if the distribution is
constant throughout the year), schools move to immediately adja-
cent cells within their distribution area following a random walk.
Maps of presence/absence used in OSMOSE have generally been
produced from the literature and experts’ opinion (e.g., Shin et al.,
2004; Travers et al., 2009; Brochier et al., 2013) or directly from
research surveys and commercial fisheries data (Fu et al., 2013).
Marzloff et al. (2009) created density maps for the eight functional
groups represented in their OSMOSE model directly from acoustic
and trawl survey data.

Atlantis is a sophisticated biogeochemical marine ecosystem
model (Fulton et al., 2004, 2007). This model integrates ecological,
fisheries, physical and chemical dynamics in a three-dimensional,
spatially explicit domain. Distribution maps are employed in
Atlantis for defining the allocation of functional groups biomass
over space at the start of simulations. These distribution maps are
habitat preference maps or density maps, produced directly from
research survey data or the literature (e.g., Fulton et al., 2007; Horne
et al., 2010; Kaplan et al., 2010). Ainsworth et al. (2011) took a dif-
ferent approach and used a habitat similarity matrix to extrapolate
research survey data to the entire spatial footprint of their Atlantis
model for the northern Gulf of California.

All the above-mentioned methods used to generate distribution
maps for spatial ecosystem models are convenient ways to create
maps rapidly. However, these methods limit the spatial coverage of
spatially explicit ecosystem models to those areas that are consis-
tently sampled. Furthermore, with the exception of Ainsworth et al.
(2011), extrapolations are not an objective process and instead rely
heavily on individual opinion.

1.2. Using GAMs to produce distribution maps for spatially
explicit ecosystem models

Data-driven statistical models such as GAMs offer a valuable,
objective way to predict abundance and biomass over extensive
geographical regions. However, the potential of GAMs for pro-
ducing distribution maps for spatially explicit ecosystem models
has not been exploited until recently (Drexler and Ainsworth,
2013). GAMs relate an ecological response to a suite of predictors
using non-linear smoothing functions (Hastie and Tibshirani, 1990;
Guisan et al., 2002). One major disadvantage of GAMs is that they
require a relatively large amount of data to have the high degrees
of freedom that guarantee their flexibility (Wood, 2006). One of
their major advantages is that they can be used to estimate spatial
patterns of abundance or biomass over a broad geographic region
spanning both sampled and unsampled areas (e.g., Koubbi et al., 2006;
Vaz et al., 2006; Loots et al., 2007; Planque et al., 2007).

Drexler and Ainsworth (2013) developed a GAM approach to
predict the relative abundance of multiple functional groups in
shelf areas across the entire Gulf of Mexico, based on abun-
dance estimates coming from a fisheries independent dataset, the
SEAMAP groundfish/trawl dataset (GSMFC, 2011; SEDAR, 2011),
and regional environmental and habitat features. There is an
overdispersion of abundance estimates in the SEAMAP ground-
fish/trawl dataset linked to the high number of zero data, as is
frequently the case with research survey data and other ecologi-
cal data (e.g., Barry and Welsh, 2002; Koubbi et al., 2006; Vaz et al.,
2006; Loots et al., 2010). To account for this, Drexler and Ainsworth
(2013) used a negative binomial GAM approach (Barry and Welsh,
2002; Zeileis et al., 2008). The authors utilized this approach to gen-
erate distribution maps for 40 functional groups represented in the
Atlantis-GOM model.
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