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a  b  s  t  r  a  c  t

Length  frequency  data  (LFD)  are  an  important  input  to integrated  stock  assessments,  and  statistical  tests
for variables  that  significantly  influence  the  length  distribution  of  fish  can  assist  in the  definition  of  effort
strata,  typically  denoted  as fisheries  or sub-fisheries,  in order  to account  for  important  systematic  differ-
ences  due  to availability  and/or  gear-specific  selectivity  of size  classes.  Here,  a nonparametric  model  of
the  probability  density  function  of  lengths  is  described  which,  instead  of  fitting  to LFD  directly,  is  fitted  to
the  set  of  length  quantiles  for a pre-determined  set  of  corresponding  probabilities  p (in  this  instance  0.05,
0.1–0.9  in  0.1 increments,  and  0.95).  These  length  quantile  data  (LQD)  can be constructed  with  individual
hauls  as sampling  units  or after  pooling  hauls  to  sampling  units  defined  by  combinations  of  covariates
such  as gear  type,  spatial  block,  depth  strata,  or the  sex of  sampled  fish.  The  length  quantiles  are  mod-
elled  as  a  Gaussian  response  variable  using  a Generalised  Additive  Mixed  Model  (GAMM)  with  smoothing
splines  fitted  for  each  combination  of  the  covariates  (i.e.  gear type,  depth  strata  and  sex).  Graphical  pre-
sentation  of  the  fitted  splines  along  with  standard  error  of difference  bounds  were  used  to  investigate
where  differences  were  significant  in  order  to assist in  the  optimal  definition  of sub-fisheries.  The  model
has  the  advantage  of  greater  generality  and  sensitivity  in  detecting  differences  compared  to  modelling  a
single  quantile  such  as  the  median.  In  addition,  fitting  splines  allows  flexible  and  parsimonious  modelling
of  length  distributions  of  any  shape.  The  model  is demonstrated  using  LQD  from  commercial  fishing  for
Patagonian  toothfish  at Heard  Island.

Crown  Copyright  © 2014  Published  by Elsevier  B.V.  All  rights  reserved.

1. Introduction

Integrated fish stock assessments using software such as
MULTIFAN-CL (Fournier et al., 1998), CASAL (Bull et al., 2005), and
Stock Synthesis (Methot and Wetzel, 2013) attempt to estimate
parameters of a fish population dynamics model by minimis-
ing an objective function for observations and predictions. These
softwares account for the attributes of commercial fishing which
both removes significant numbers of fish from the population
and provides an opportunistic sampling process for generating
observations of stock attributes. Random sub-samples of the “sam-
ple” of fish captured in commercial hauls measured for length
and aggregated to seasonal or yearly totals by effort strata and
length bins, are typically denoted length frequency data (LFD). LFD
are one of a number of different data types fitted in integrated
assessments.
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To account for the interaction between the ability of a gear type
to capture and retain fish of certain sizes and the availability of fish
size classes to the fishing gear, integrated assessments typically
apply selectivity functions specific to each ‘fishery’ or “sub-fishery”
(e.g. Hillary et al., 2006; Candy and Constable, 2008). For example, to
account for differing availabilities of particular length classes across
the overall fishery, sub-fisheries can be defined based on spatially
defined units such as particular fishing grounds or seafloor depth.

Toothfish (Dissostichus spp.) fisheries in the Southern Ocean
have features that result in strong heterogeneity in the length fre-
quency data (LFD). These include biological factors, such as the
tendency for toothfish to move deeper as they grow, and sexual
dimorphism in growth and movement rates (Collins et al., 2010;
Phillips et al., 2005; Welsford et al., 2011). This availability of size
classes with depth interacts with where and how the sub-fisheries
target the toothfish stocks. At South Georgia (CCAMLR subarea 48.3)
and Heard Island and McDonald Islands (CCAMLR Division 58.5.2)
small juvenile Patagonian toothfish (Dissostichus eleginoides) have
been targeted by trawling in waters of less than 1000 m depth,
while larger fish are caught by longlines in deeper waters up to
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2500 m.  Within each sub-fishery, toothfish LFD are typically uni-
modal (Hillary et al., 2006; Candy and Constable, 2008).

In stock assessments, sub-fisheries are pre-defined and used
to represent a stratification of fishing effort. For each sub-fishery,
available LFD are aggregated across hauls for each fishing year
and fitted using a multinomial likelihood. Previous work using
LFD has concentrated mostly on defining and then estimating
an appropriate “effective sample size” for such LFD at the sub-
fishery by year level so that the uncertainty in such data due to
sampling and model error is adequately accounted for by a nomi-
nal multinomial likelihood (Candy, 2008; Francis, 2011; Maunder,
2011).

In contrast, very little research has been carried out on objec-
tive methods to pre-define sub-fisheries using LFD. Typically, no
formal statistical basis for defining sub-fisheries is used. For exam-
ple, Hampton and Fournier (2001) simply define 16 sub-fisheries
as combinations of 7 regions and 6 gear types for use in an inte-
grated assessment of yellowfin tuna (Thunnus albacares) for the
western and central Pacific. Notable exceptions are Phillips et al.
(2005) who stratified effort for the Ross Sea Antarctic toothfish
(Dissostichus mawsoni) stock assessment with tree-based regres-
sion methods described in Breiman et al. (1984). This was  done for
a single quantile (i.e. the median) of the haul-level length sample
including predictors of small spatial scale research units and depth.
Lennert-Cody et al. (2010) generalised this approach by modelling
LFD using a multivariate regression tree approach. They applied
their method to yellowfin tuna caught in the purse-seine fishery of
the eastern Pacific Ocean, with sample units defined by the aggre-
gate of hauls within 5◦ latitudinal by 5◦ longitudinal spatial units
combined with temporal “quarters” where each were defined as
continuous variables.

Similarly to Phillips et al. (2005) and Lennert-Cody et al. (2010),
this study has as main objective the description of a statistical
approach for pre-stratification of effort and thus the definition of
sub-fisheries using length data, where effort is represented by indi-
vidual hauls or groupings of hauls. Our method of pre-stratification
is similar to that of Lennert-Cody et al. (2010) in that it does not
assume an underlying parametric functional form (e.g. lognormal)
for the probability density function (PDF) of lengths in the sam-
pled population and therefore can be described as nonparametric.
However, in contrast to their classification-based approach of data-
driven splits on continuous predictor variables, our approach uses
the classical hypothesis testing approach of pre-specifying inde-
pendent factors that in combination split the samples a priori and
test the statistical significance of these factors including any inter-
actions.

The method described here involved fitting a model to a set
of length quantiles, L, corresponding to a pre-determined set of
corresponding probabilities p (in this instance 0.05, 0.1 to 0.9 in
0.1 increments, and 0.95). These length quantile data (LQD) are
constructed by either treating individual hauls as the sampling
units or by pooling hauls to sampling units defined by combi-
nations of discrete-valued covariates such as gear type, spatial
block, depth strata, and sex. The length quantiles are modelled as
a Gaussian response variable using a Generalised Additive Mixed
Model (GAMM) (Wood, 2006) with smoothing splines fitted for
each combination of the covariates (i.e. gear type, depth strata, and
sex). For comparison of model fit Akaike’s Information Criterion
(AIC) (Akaike, 1973) is used, while for a given model comparisons
between fitted splines for each factor combination are carried out
graphically using approximate 95% confidence bounds for differ-
ences between factor levels for given values of probability. The
model and methods of model testing are demonstrated using length
data obtained for trawl, longline, and trap gear types from com-
mercial fishing for Patagonian toothfish at Heard and McDonald
Islands.

2. Materials and methods

2.1. Statistical approach

The approach uses Generalised Additive Mixed Models
(GAMMs) to fit smoothing splines to LQD for a fixed set of associated
probabilities (Appendix A) to parsimoniously represent the under-
lying family of cumulative probability density functions (CDFs) for
length. To do this we applied the gamm function in the R-software
(R Core Team, 2013) library mgcv (see Wood, 2006).

The expected value of the response variable of length quantile L
conditional on pre-specified probability levels, p, and combinations
of discrete-levelled factors such as depth strata, gear type, and sex,
expressed as a composite factor C, is given by:

E(Lkji|Cj, pi) = ˇ0 +
J∑

j,j′=2

ˇj−1Ijj′ + s(Cj : pi, �) (1a)

where the subscript i indexes the specific quantiles chosen, for
example for p = vec(0.05, 0.1, 0.2, . . .,  0.9, 0.95); there are J levels
of factor C with parameter corresponding to its first level aliased
with ˇ0; Ijj′ is the element of the indicator matrix that takes the
value 1 if j j′, corresponding to Cj, and zero otherwise; the sub-
script k indexes spatial blocks which are crossed (i.e. possibly only
partially crossed) with level of C, in order to define individual LQD
sample units (SUs) (note that each SU could correspond to individ-
ual hauls or be defined as all hauls pooled within each combination
of spatial block and factor level of C); the spline terms are denoted
by s(Cj: pi, �); and the term Cj: pi represent the model with separate
splines for each level of C. The parameter � is the dimension of the
basis used to represent the smooth term (Wood, 2006) (see also
choose.k in gam{mgcv}help for the mgcv package).

The mgcv library allows only a single factor to be used within the
spline term in this way. This requires that the composite factor C
must be constructed to give unique levels for each combination of
the factors of interest for estimation, for example for each combina-
tion of the levels of sex and depth class. In order to investigate the
contribution of each factor and determine the minimal significant
model in terms of their main effects and interactions, C must be
constructed for each version of the model. Model selection should
proceed by backward selection of first the interactions and then
the main effects in a way that preserves marginality constraints
(Nelder and Lane, 1995). In addition, to investigate the contribution
of each of these factors in a model, the predictions for each factor
level that make up the composite factor C are obtained by appropri-
ate cross-referencing (see R-code “calculate SE” in Supplementary
Material).

The random component of the model is given by:

Lkji = E(Lkji|Cj, pi) + �k + �kj + εkji (1b)

where

εkji∼N(0, �2/Nkj), cor(εkji, εkji′ ) = ϕ|pi−pi′ |

�k∼NID(0,  �2
� ), �kj∼NID(0,  �2

� )

where �k is the kth element of the set of random effects represent-
ing spatial blocks and are considered normally and independently
distributed (NID), the �kj represents a set of random effects for
the SUs with each SU consisting of a sample of Nkj lengths, the
εkji represent the combined within-SU model error and measure-
ment error (Appendix B) and are approximated by a first-order
continuous “time” autoregressive process (CAR). For example for
each spatial block, a sample of females considered separately to
a sample of males taken from the same block, k = k′, would have
two levels j = 1, 2 within k′. The case of depth classes is more com-
plicated because they also depend on the size of the blocks and
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