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a  b  s  t  r  a  c  t

Changes  in the  observed  size-  or age-composition  of  commercial  catch  can occur  for  a  variety  of  reasons
including:  market  demand,  availability,  temporal  changes  in  growth,  time-area  closures,  regulations,  or
change  in fishing  practice,  to  name  but  a few.  Two common  approaches  for  dealing  with  time-varying
selectivity  in  assessment  models  are  the  use  of discrete  time-blocks  associated  with  an  epoch  in  the
history  of  the  fishery,  or the use of  penalized  random  walk  models  for  parametric  or  non-parametric  selec-
tivity curves.  Time  block  periods,  or penalty  weights  associated  with  time-varying  selectivity  parameters,
are  subjective  and  often  developed  on an  ad hoc  basis.  A factorial  simulation–estimation  experiment,  with
discrete  or  continuous  changes  in selectivity,  is  conducted  to determine  the  best  practices  for  modeling
time-varying  selectivity  in fisheries  stock assessments.  Both  the  statistical  properties  of  the  assessment
model  and  the  policy  implications  of  choosing  the wrong  model  are  taken  into  consideration.

©  2013  Elsevier  B.V.  All  rights  reserved.

1. Introduction

There are many reasons why fisheries selectivity may vary over
time and the impact of ignoring changes in selectivity in age- or
size-structured stock assessment models leads to biased estimates
of abundance and mortality rates (e.g., Gudmundsson et al., 2012).
Moreover, not accounting for changes in selectivity can lead to
extremely optimistic projections in stock abundance (e.g., 2J3KL
cod stocks, Walters and Maguire, 1996).

Many statistical catch-age models assume age-based selectiv-
ity when in fact the underlying harvesting process is size-based.
This is a reasonable assumption if fish of a given size maps to a
corresponding age; however, when this approach is taken changes
in size-at-age associated with changes in growth rates can have
serious implications for the interpretation of age-based selec-
tivity. Changing to length-based selectivity and using empirical
length-at-age data can resolve some of the model misspecification;
however, ontogentic movement of fish can also lead to changes
in age-based selectivity when the distribution of fishing effort, or
fish distribution relative to effort, changes over time. Recently,
the International Pacific Halibut Commission (IPHC) changed from
using time-invariant size-based selectivity to time-varying size-
based selectivity to account for both ontogeny and the changes in
the relative stock distribution (Stewart et al., 2012). The change led
to marked improvements in retrospective performance and a trend
in estimated spawning biomass that was consistent with trends
in survey data. The previous assessment model was  unable to
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consistently match the age-composition information and survey
trends due to this model misspecification.

There are two  general approaches for incorporating time-
varying selectivity in stock assessment models; (1) the use of
discrete time-blocks, and (2) continuous penalized random walk
approach. The use of discrete time-blocks should be done a pri-
ori, where the specified time blocks represent periods of consistent
fishing practice, and a new block is specified when significant
changes in fishing practice occur that may  result in changes in selec-
tivity. This approach is difficult to implement. Scientists are not
necessarily qualified to identify breaks associated with changes in
fishing behavior, and breaks in the terminal year are not identifiable
in the model due to confounding with other model parameters. In
practice, however, the time-blocks are also implemented post hoc
to rectify residual patterns in age- or size-composition data. This
practice is often highly subjective. Another discrete approach is to
decompose the fisheries catch statistics into specific time periods
that correspond to major transitions in fishing practice. For exam-
ple, the BC herring fishery prior to 1970 was  largely a reduction
fishery where herring were harvested during the winter months
using purse seines. After the collapse of the fishery in 1969, the
fishery re-opened using a higher proportion of gill-nets targeting
older sexually mature female herring for valuable roe. This change
in fishing practice led to a significant change in the selectivity of
the fishing gear. In some cases this can be reconciled by separating
fishing fleets in the model as well.

The alternative approach is to allow for continuous changes
in selectivity and model estimated selectivity parameters as a
penalized random walk. In this case, specification of the vari-
ance parameter in how quickly selectivity is allowed to change
is also subjective. It should also be noted that the choice of a
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time-invariant selectivity is also a subjective structural assumption
of the assessment model, and this choice can also greatly influ-
ence model results, estimates of reference points, and result in
bias forecasts. Other altneratives include using random effects (see
Mäntyniemi et al., 2013) and cross validation model selection (see
Maunder and Harley, 2011). The random effect and cross validation
methods allow for the estimation of the variance parameter from
the data, thus reducing the subjective nature of specifying penalty
weights for selectivity curve parameters.

Changes in fisheries selectivity also has implications for refer-
ence points based on maximum sustainable yield (MSY, Beverton
and Holt, 1993). Trends towards catching smaller fish result in
reductions in the harvest rate that would achieve MSY; therefore,
it is important to account for changes in selectivity (and the asso-
ciated uncertainty) when developing harvest policy for any given
stock.

The over-arching objective is to evaluate the relative perfor-
mance of assuming more or less structural complexity in selectivity
when the data are in fact simple and when the data come from a
fishery with dynamic changes in selectivity. In this paper, we con-
duct a series of simulation experiments using a factorial design
with fixed selectivity, discrete changes in selectivity, and continu-
ous changes in selectivity and compare statistical fit, retrospective
bias, and estimated policy parameters using simulated data. We
also explore the use of two-dimensional interpolation methods to
reduce the number of estimated latent variables when selectivity
is assumed to vary over time.

2. Methods

Simulated data were generated from an age-structured simu-
lation model largely based on the 2010 Pacific hake assessment.
Simulated data were based on three alternative selectivity scenar-
ios: (1) constant over time, (2) selectivity changes at four specific
time-periods (blocks), and (3) selectivity changes continuously
over time where the commercial fishery targets the most abun-
dant cohort in each year. Four alternative estimation models were
used to estimate the underlying parameters from data generated
by each of the simulation models. In each of the assesment, initial
parameter values differed from the values used in the simulation
models to reduce potential biases associated with starting at val-
ues near the MLE  estimates. First, we describe the model structure
used to simulate data and estimate model parameters, followed
by a description of the MSY-based reference points, and lastly the
detailed description of the various scenario combinations explored.

2.1. Model description

A statistical catch-age model was used to both generate simu-
lated data sets and estimate model parameters based on simulated
data. These simulation–estimation experiments were based on data
from the Pacific hake fishery from 1977 to 2009, using the historical
catch time series from US and Canada combined and the empirical
weight-at-age data from this fishery available at the time (Martell,
2010). The model was written in AD Model Builder (Fournier et al.,
2011) and all model code and data are available from a code repos-
itory (see CAPAM branch at https://github.com/smartell/iSCAM).

Input data for the model consist of fishery removals along
with age-composition information and empirical weight-at-age
data from the commercial fishery. In addition to the commer-
cial data, a fisheries independent survey also exists and includes
a relative index of abundance and age-composition information.
The actual acoustic survey for Pacific hake historically occurred
every three years prior to 2001, then every two  years, and since
2011 has occurred every year. For the simulation–estimation

Table 1
Parameters used for simulation model in the integrated statistical catch-age model.

Description Symbol Value

Log unfished age-1 recruits Ro 3.353
Steepness (Beverton–Holt) h 0.727
Natural mortality rate M 0.230
Log  average age-1 recruitment R 1.300
Log  initial recruitment Ṙ 0.428
Survey standard deviation �1 0.300
Standard deviation in recruitment �R 1.120
Age at 50% selectivity in survey â 2.500
Std dev. in 50% selectivity in survey ĝ 0.500
Std  dev. in age-sampling error �2 0.300

experiments we assume that fishery-independent abundance and
age-composition information exist for all years.

Parameters for the simulation–estimation experiments were
based on the maximum likelihood estimates of the initial
numbers-at-age and annual recruitment deviations from the 2010
assessment (Martell, 2010). The annual relative abundance data
was assumed to be proportional to the available biomass and to
have log-normal measurement errors:

It = qe�1�t−0.5�2
1
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where the random deviate is � ∼ N(0, 1), �1 is the standard devi-
ation, �a is the age-specific proportion that this selected by the
acoustic sampling gear, Na,t is the numbers-at-age, and Wa is the
average weight-at-age. For simplicity, the scaling parameter was
fixed at q = 1.

Age-composition data for both commercial and survey sam-
ples were randomly drawn from a multivariate distribution with
a probability of pa,t of sampling an age-a fish in a given year t. The
age-proportion samples must sum to 1 in each year, and random
samples were based on the the following:
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where �a,t is a standard random normal deviate, �2 is the standard
deviation, p̂a,t is the expectation of the proportion-at-age in year t
in the sampled catch.

True parameter values used in the simulation model are listed
in Table 1. Annual fishing mortality rates were conditioned on the
observed catch from the Pacific hake fishery and it was assumed
that both natural mortality and fishing mortality occur simultane-
ously. Simulated age-specific fishing mortality rates were based on
the annual age-specific selectivity which differs among three alter-
native simulation scenarios (see description in Section “Scenarios”).

2.2. Parameter estimation

Model parameters were estimated using maximum likelihood
methods where the objective function includes additional penalties
to constrain the shape of the selectivity curve and how much it is
allowed to vary over time (Table 2). There are 6 major components
to the objective function that is being minimized: (1) the likeli-
hood of the observed catch (T2.5), (2) the likelihood of the relative
abundance index (T2.6), (3) the likelihood of the age-composition
information (T2.7), (4) the likelihood of the stock–recruitment esti-
mates given the values of steepness and unfished age-1 recruits
(T2.8), (5) prior densities in negative log space for estimated model
parameters (T2.9), and (6) penalties and constraints for selectivity
coefficients (T2.10).
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