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a  b  s  t  r  a  c  t

Our  article  presents  a  robust  and flexible  statistical  model  of  the  age–length  relationship  of  cardinalfish
(Epigonus  crassicaudus).  Specifically,  we  consider  a non-linear  regression  model  in  which  the  error  dis-
tribution  allows  for heteroskedasticity  and belongs  to the  skew-normal  (SMSN)  distributions  family  of
scale  mixtures,  thus  eliminating  the  need  to  transform  the dependent  variable  using techniques  such  as
the Box–Cox  transformation.  The  SMSN  is  a tractable  and flexible  class  of  asymmetric,  heavy-tailed  dis-
tributions  that  is  useful  for robust  inference  when  the  normality  assumption  for  the  error  distribution  is
questionable.  Two  well-known  important  members  of  this  class  are  the proper  skew-normal  and  skew-t
distributions.  In this  work, the  skew-t  model  is emphasised.  However,  the  proposed  methodology  can
be  adapted  for  each  of  the SMSN  models  with  some  basic  changes.  The  present  work  is motivated  by  a
previous  analysis  of  cardinalfish  where  the  oldest  specimen  was  15 years  of  age.  In this  study,  we  use
the  proposed  methodology  on a data  set based  on an otolith  sample  where  the  determined  longevity  is
higher  than  54  years.

Crown Copyright ©  2013 Published by Elsevier B.V. All rights reserved.

1. Introduction

Interest in describing the growth of biological species is increas-
ing. This interest has motivated the use of biological models to
describe growth in terms of an age–length relationship. The von
Bertalannfy (VB) growth curve is a notable model (von Bertalanffy,
1938; Kimura, 1980). This model explains the length of a species
in terms of its age by means of a non-linear function depending
on three parameters: L∞, K, and t0. L∞ represents the asymptotic
length of the species under study; K is the growth rate, also known
as the Brody growth rate coefficient (Brody, 1945); and t0 is the
theoretical age at length zero. Specifically, if y(x) represents the
observed length at age x, then a deterministic expression of the VB
growth curve is given by

y(x) = L∞(1 − e−K(x−t0)). (1)

To fit Eq. (1) using an empirical dataset, (yi, xi), i = 1, . . . , n, where
yi (length) and xi (age) are the response and explanatory variables
for the ith sample subject, respectively, the VB growth curve can be
described as a non-linear regression

yi = �i + εi, (2)
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where �i = �(  ̌ ; xi) = L∞(1 − e−K(xi−t0)),  ̌ = (L∞, K, t0)T is the vector of
unknown parameters and the εi are independent, random errors.

Kimura (1980) studied Eq. (2) under the assumptions of
independence and normality for the random errors models,
εi∼N(0, �2), and proposed the maximum likelihood method to
fit the model (see also Allen, 1966). Other models include nor-
mal  errors with a constant coefficient of variation (CV) (Candy
et al., 2007) and multiplicative log-normal errors (Millar, 2002). The
robustness of the log-normal distributional assumption was tested
by Wang and Ellis (1998) (gamma  and truncated normal errors
were additionally considered in that study) to estimate parameters
in the VB model when individual variability in growth is ignored
in a simplified context of uniform recruitment at constant length
and mortality among individuals. They found that, in the presence
of individual variability, the values of K and L∞ varied between
individuals, and the existing methods provided positively biased
parameter estimates. More recently, Cubillos et al. (2009) studied
the VB model using the Cope–Punt methodology (Cope and Punt,
2007), which considers a random error in assigning the age that
is determined by two  different readers. Although this last model
considers the independence and normality assumptions for the
error terms, it assumes that the assigned age is determined by an
exponential or gamma distribution, guaranteeing a real age com-
position.

In addition to studying the age–length relationship, Cubillos
et al. (2009) considered samples of otolith of cardinalfish obtained
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from 1998 to 2007 in the Chilean south central coastal zone (Lat-
itude 33–42◦S), from which a random selection of 96 otoliths was
obtained within the range of 20–37 cm from cardinalfish under 15
years of age (Gálvez et al., 2000). However, results from a new
method for reading otoliths (Ojeda et al., 2010) show that cardi-
nalfish can live for over 54 years. This species lives in waters from
100 to 550 m in depth but generally stays between depths of 250
and 300 m.  According to commercial log books, lengths mostly vary
between 17 and 47 cm,  with no significant difference between the
sexes (Wiff et al., 2005).

In this paper, we study the VB growth model (1) using a flex-
ible class of non-normal distributions for the random error εi.
Specifically, as in Basso et al. (2010), we consider the class of
scale mixture of the skew-normal (SMSN) distributions (Branco
and Dey, 2001) for random errors. The SMSN is an attractive class
of asymmetric, heavy-tailed distributions that is useful for robust
inference when the normality assumption for the error distribu-
tion is unrealistic. The flexibility of these distributions allows us to
fit observations with a high presence of skewness and heavy tails.
These distributions are additionally useful to model distributions
with extreme values that generate residual heterogeneity in classic
models (Kimura, 1990). Arellano-Valle et al. (2013) conclude that
including skewness and heavy tails in the model to fit untrans-
formed data produces different decisions than those obtained by
applying the normal model to transformed data using the Box–Cox
technique, thus ensuring the effective maximisation of the likeli-
hood function. Our study additionally incorporates Cook’s (1986)
local influence analysis and the conformal normal curvature of Poon
and Poon (1999). The datasets considered in this study contain
observations of cardinalfish up to 61 years of age, a substantially
wider range of ages than in the Gálvez et al. (2000) study.

2. Methodology

In this section, we study the VB non-linear regression model
using a similar approach to the one used by Basso et al. (2010),
Lachos et al. (2010, 2011) and Labra et al. (2012). Specifically, we
consider a non-linear regression model (2) with the assumption
that the random errors εi are independent, heteroskedastic and
distributed according to the SMSN class of distributions. In other
words, we suppose that

εi = u−1/2
i

ei + �i, (3)

where ei and ui are independent random quantities and the �i are
location parameters. More precisely, the ei are independent skew-
normal random errors, ei∼SN(0,  �2

i
, �i), with density function
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where �i > 0 and −∞ < �i < ∞ are scale and shape/skewness
parameters, respectively, and �(z) and �(z) are the density and
distribution function of the standardised normal distribution,
respectively. In (3), the ui are positive (scale) random factors per-
turbing the skew-normality and are assumed to be independent
and identically distributed (iid) with distribution function G(u ; 	)
defined on (0, ∞),  depending on the unknown parameter 	 (possibly
vectorial).
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Table 1
Some variance functions.

Model m(� ; xi)

Homoskedastic 1
CV constant (Candy et al., 2007) �2

i

Kimura (Kimura, 1990) �2�
i

Exponential (Labra et al., 2012) e�xi

Power (Labra et al., 2012) x2�
i

with a zero mean, we  impose the condition �i = −
√

2/
 �1�iıi.
Under this condition, we then have for the response variable yi

E(yi) = �i and Var(yi) = �2�
2
i
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}
, (4)

where �i = �(  ̌ ; xi) is the VB curve defined as in (2).
We can additionally observe from (3) that, given the scale mix-

ture factors ui, the random errors εi have skew-normal distribution
SN(�i, u−1

i
�2
i
, �i) and are independent. Hence, we have from (2)

that, conditionally on ui, the response variables yi have a distri-
bution yi|ui∼SN(�i + �i, u−1

i
�i, �i). The marginal density of yi is

therefore
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(5)

where zi = (yi − �i − �i)/�i.
The SMSN class of densities in (5) provides several asymmetric,

heavy-tailed models that are useful for robust inference in the pres-
ence of influential observations or outliers. All these distributions
contain the skew-normal as a special case. In addition, for �i = 0,
the SMSN class reduces to the symmetric class of scale mixtures of
normal distributions considered in Lange and Sinsheimer (1993).

We additionally assume that �i = �, so that ıi = ı, and �2
i

=
�2m(�; xi), where m(� ; xi) is a nonnegative variance function such
that m(0 ; xi) = 1. Consequently, in (5) the model parameters are
given by  ̌ = (L∞, K, t0)�, �2, �, � and 	. Additionally, the specifi-
cations presented in Table 1 below are considered for the variance
function m(� ; xi). Note that in Table 1, the Kimura, exponential and
power functions allow for � = 0 and � /= 0, which are the most
obvious examples of homoskedastic and heteroskedastic variabil-
ity, respectively. Furthermore, for � < 0, all of these variance models
produce a trend toward decreasing variance, whereas in the case
of � > 0, a trend of increasing variance is produced (Kimura, 1990).
Finally, the CV constant is a particular case of the Kimura model
when � = 1.

2.1. The skew-t model

In this section, we  focus our attention principally on the skew-
t case with 	 (	 > 0) degrees of freedom (Branco and Dey, 2001;
Azzalini and Capitanio, 2003; Genton, 2004; Arellano-Valle et al.,
2013). This model assumes, as in (3), that the mixing random factors
ui are iid Gamma(	/2, 	/2) with density g(ui ; 	) = dG(ui ; 	)/dui given
by

g(ui; 	) = (	/2)	/2


(	/2)
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In this case, we have
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	 − 2
, 	 > 2.
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