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a  b  s  t  r  a  c  t

Bayesian  observation  error  (OEM),  process  error  (PEM)  and  state-space  (SSM)  implementations  of  a  Fox
biomass  dynamics  model  are  compared  using  a simulation–estimation  approach  and  by  applying  them  to
data for  the  octopus  fishery  off  Mauritania.  Estimation  performance  is evaluated  in  terms  of  bias,  precision,
and  reliability  measured  by  the  extreme  tail-area  probability  and  the  mean  highest  posterior  density
interval.  The  PEM  generally  performs  poorest  of the three  methods  in  terms  of  the  these  performance
metrics.  In  contrast,  the  OEM  is precise,  but  under-represents  uncertainty.  The  OEM  is outperformed  by
the SSM  in  terms  of its  ability  to provide  posterior  distributions  which  adequately  capture  parameter
uncertainty.  It is key  to  consider  the  above  four  metrics  when  comparing  estimation  performance  in
a Bayesian  context.  Finally,  although  model  performance  measures  are  useful,  there  is  still  a  need  to
examine  goodness  of  fit statistics  in actual  applications.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Biomass dynamics models have been used widely in fishery
stock assessment, not only because of their algebraic simplicity,
but also because they provide estimates of the management refer-
ence points, MSY, BMSY and FMSY (Fox, 1970; Hilborn and Walters,
1992; Schaefer, 1954) and require few data for parameter estima-
tion (usually just a time-series of catches and an index of relative
abundance). Although no longer the method of choice for stock
assessment, they are still used in several jurisdictions when there
are few data except for an index of relative abundance and catches
(e.g., sea urchin or octopus in Mexico (Jurado-Molina et al., 2009;
Jurado-Molina, 2010), prawns off northern Australia (Zhou et al.,
2009), sea cucumbers off British Columbia, Canada (Hajas et al.,
2011), and octopus fisheries off NW Africa (Ould Mahmoud et al.,
2006)).

Biomass dynamics models are most commonly expressed in the
form of a discrete (typically on a yearly basis) equation defining
the biomass at time step t + 1 as the biomass at time step t plus
the production during the interval [t,t + 1] less the catches during
this interval. These models are fitted to one or more time-series of
observed abundance indices, which are assumed proportional to
biomass with a proportionality constant (often denoted q) inter-
preted as catchability when the abundance indices are catch-rates.
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Several methods have been developed to fit biomass dynamics
models to observations to estimate key parameters and infer the
unknown biomass trajectories. Random errors can be considered
in the process equation (due to fluctuations in the size of popu-
lation because of variation in recruitment, natural mortality, and
growth), typically through multiplicative log-normal errors (Meyer
and Millar, 1999; Polacheck et al., 1993; Punt, 1989, 2003), and/or
in the observations (due to sampling variability and variation in
catchability), again usually assumed to be log-normal.

Classical fitting approaches include equilibrium methods or
methods that take account of the dynamics of the population
(Hilborn and Walters, 1992; Polacheck et al., 1993). The latter meth-
ods usually assume that all of the error is due to process error or
due to observation error. Comparisons of process and observation
error estimators using simulation have suggested that the latter
generally perform better than the former (more precise and less
biased) (Polacheck et al., 1993). Methods have also been developed
to simultaneously account for both process and observation error in
a state-space model framework. Both maximum likelihood-based
(e.g., de Valpine, 2002; de Valpine and Hastings, 2002; Freeman
and Kirkwood, 1995) and Bayesian (Clark, 2003; Hammond and
Trenkel, 2005; McAllister and Kirkwood, 1998; Meyer and Millar,
1999; Millar and Meyer, 2000; Zhou et al., 2009; Jiao et al., 2011)
approaches have been used to implement biomass dynamics mod-
els within a state-space modelling framework. Conventionally,
approaches which assume process error only are considered to be
most appropriate for short-lived species which show large fluc-
tuations in abundance, apprarently unrelated to fishing pressure,
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while approaches which assume observation error are considered
to most appropriate for species such as whales for which large
natural fluctuations are rare.

The focus of this paper is on Bayesian estimation methods.
Bayesian methods have received considerable attention in the
ecological literature during the last 20 years, in particular in the
fishery sciences, because they provide ready quantification of the
uncertainty of parameters and model outputs, and hence provide
the information needed to conduct probabilistic decision analy-
ses (Harwood and Stokes, 2003; McAllister and Kirkwood, 1998;
Punt and Hilborn, 1997; Rosenberg and Restrepo, 1994) or to form
the basis of operating models in Management Strategy Evalua-
tion (Smith et al., 1999). In addition, Monte Carlo (MC) estimation
methods are now efficiently implemented in several software
packages, including the free program OpenBUGS (http://www.mrc-
bsu.cam.ac.uk/bugs/winbugs, Lunn et al. (2000, 2009))  and enable
posterior distributions for complex models (including non-linear
non-Gaussian state-space models) to be represented fairly straight-
forwardly (Meyer and Millar, 1999; Rivot et al., 2004; Buckland
et al., 2007; Zhou et al., 2009). In contrast, most frequentist methods
either involve assumptions which are likely unrealistic (such as lin-
earity – the extended Kalman filter – Freeman and Kirkwood, 1995;
Punt, 2003) or have high computational and algebraic demands
and hence are difficult to test by means of simulation. ADMB-
RE (Pedersen et al., 2011), in contrast, provides a computational
efficient way to implement state-space models. MC  estimation
methods have been used in many case studies in the fisheries
sciences (e.g., Fernández et al., 2010; Ibaibarriaga et al., 2008;
Michielsens et al., 2006; Rivot et al., 2004; Swain et al., 2009). How-
ever, relatively few papers (Clark, 2003; Hammond and Trenkel,
2005; Jiao et al., 2011; Robert et al., 2010 or Zhang et al., 2009)
have assessed the performance of these estimation methods using
a simulation–estimation (SE) approach.

The objective of this paper is to use simulations to compare
the performance of Bayesian implementations of observation error
(OEM), process error (PEM), and state-space (SSM) formulations of
the biomass dynamics model in terms of the ability to accurately,
precisely and reliably estimate some of the key quantities on which
fisheries management advice is based. We  extend the work of Punt
(2003) by assessing the relative performance of the three estima-
tion methods within a Bayesian framework and also introduce new
metrics to assess estimation performance in a Bayesian context and
show how a combination of these metrics can improve evaluation
of the estimation performance. The analysis of catch and abundance
data for the Mauritanian octopus (Octopus vulgaris) (Fig. 1) is used
as an application example.

2. Materials and methods

2.1. State-space modeling of biomass dynamics models

The dynamic process equation was defined as the classical
budget equation subject to multiplicative log-normal error with
variance �2

proc. The Fox biomass dynamics model was  used as the
true model for the simulations because it formed the basis for past
assessments of octopus off Mauritania (Chassot et al., 2010; Gascuel
et al., 2010; Ould Mahmoud et al., 2006) (the operating model):

Bt+1 =
(

Bt + rBt

(
1 − log(Bt)

log(K)

)
− Ct

)
eεt−(�2

proc/2); εt∼N(0, �2
proc)

(1)

where Bt is the biomass at the start of the year t, r the intrinsic rate of
growth, K the carrying capacity and Ct the (observed) catch during
year t. The term rBt(1 − log(Bt)/log(K)) is the assumed relationship
between surplus production and biomass (Fox, 1970).
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Fig. 1. Catch history for the Mauritanian octopus, 1971–2005 (solid line), the alter-
native catch scenario in which catches are zero for the 11 last years of the modeled
period (dashed line), and the standardized (standardized by the mean abundance
index from 1991 to 1997) index of abundance from the WG98  data (dotted line),
“Survey” data (double-dashed line) and “Industry” data (dot-dashed line).

The observation equation(s) relates one or several time series of
observed abundance indices It to biomass through a proportionality
constant q. A log-normal observation error with variance �2

obs is
used to capture sampling variability and variation in catchability:

It = qBte
�t−(�2

obs
/2) �t∼N(0, �2

obs) (2)

2.2. Simulation protocol

The first step of the SE approach involves simulating time-
trajectories of biomass and an abundance index using Eqs. (1) and
(2) with pre-specified parameters (Table 1) (assumed to be the
true values for the analyses) and catches set equal to the observed
catches of Mauritanian octopus during 1971–2005 (Fig. 1). The
biomass at the start of the catch series (B1971) was assumed to be
equal to the carrying capacity K. In a second step, the simulated
abundance indices and catches were used as “data” in the Bayesian
analyses, and the performances of estimation methods based on
OEM, PEM and SSM were evaluated.

The three estimation methods may  behave differently depend-
ing on the available data and other hypotheses, so data were
simulated for various scenarios, and the simulations were crossed

Table 1
Parameter specifications for the scenarios.

Scenario namea Scenario no. r B2005/K �proc �

Baseline 1a 1.2 0.2 0.05 1
Variant1 1b 1.2 0.4 0.05 1
Variant2 1c 1.2 0.6 0.05 1
Higher r 2a 1.6 0.2 0.05 1

2b  1.6 0.4 0.05 1
2c  1.6 0.6 0.05 1

Lower r 3a 0.8 0.2 0.05 1
3b  0.8 0.4 0.05 1
3c  0.8 0.6 0.05 1

Lower catch, more
informative data

4 1.2 0.4 0.05 1

Different variance ratio 5a 1.2 0.2 0.05 0.2
5b  1.2 0.2 0.05 5

Different variance level 6a 1.2 0.2 0.01 1
6b 1.2  0.2 0.25 1

Prior mis-specification 7a 0.8 0.2 0.05 1
7b 1.6  0.2 0.05 1

a q was set to 10−6 for all scenarios.
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