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a b s t r a c t

In assessing a fish stock, indices based on catch per unit effort (CPUE) are frequently used. Estimates
of three indices of catch per unit effort were compared here (CPUE1, CPUE2 and CPUE3), considering
the fitting of two models: (i) a bivariate geostatistical model for catch and effort; (ii) a bivariate model
where catch and effort were considered spatially independent. For comparing the estimates of the three
indices after the fitting of the two models, catch and effort data were simulated in different scenarios.
The simulation study showed that, in general, the estimates of CPUE1 expressed by the ratio of the means
of catch and effort, present better results for different scenarios and that the estimates from (i) are better
than (ii), mainly when there is a correlation between catch and effort and an additional spatial correlation.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

To evaluate a fish stock, data of catch and effort resulting from
commercial fishing are usually used in heuristic relationships.
Based on catch and effort data, indices of relative abundance are
calculated in order to supply information about the stock. In a
given inhabited area by a given stock, if the density (or concen-
tration) of fish (biomass/volume) is constant for the whole area the
CPUE is proportional to stock abundance (strict proportionality)
(Clark, 1985). In some cases this relationship might not be linear.
The examination of this relationship is not the main theme of this
paper. However, in the light of this paper for any supposed model
the relationship CPUE × abundance, it is necessary to estimate the
CPUE in order to evaluate the abundance.

Detailed records, with information on the geographic coordi-
nates where fishing occurred allow a spatial analysis of fishing.
Normally a point of reference is given for each quadrat (sub-regions
delimited by parallels and meridians) where fishing occurred
(ICCAT, 2007).
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Based on catch × effort data, three CPUE indices may be defined
for a whole area:

CPUE1 = 1
n

n∑
i=1

Ci

Ei
; mean of the ratios catch by effort;

CPUE2 =
∑n

i=1Ci∑n
i=1Ei

; ratio of total catch by total effort;

CPUE3 =
∑n

i=1CiEi∑n
i=1E2

i

; ratio estimator

as proposed by Snedecor and Cochran (1967),where Ci, i = 1, 2, . . ., n,
represents the catch in the ith quadrat and Ei the respective effort,
n is the total number of quadrats superposed as an artificial grid in
the fishing area.

The three indices may be described as Ci/Ei averages distin-
guished by the weighing criteria, that is

∑n
i=1(Ci/Ei)wi. In CPUE1

the weighing factor is wi = 1/n; in CPUE2 it is wi = Ei/(
∑n

j=1Ej)

and in CPUE3 we have wi = E2
i
/(

∑n
j=1E2

j
).

Whenever C (Capture) be proportional to E (Effort), the regres-
sion line between them statistically goes through the origin, and
can be fitted by the simple model Ci = ˇEi + εi. CPUE3, together with
CPUE1 and CPUE2, are all unbiased estimates of the population
ratio ˇ in normally distributed populations. The choice among the
three is a matter of precision: the most precise among the three
is CPUE3, CPUE2 and CPUE1 if the variance of ε (error term) is
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constant, proportional to E or to E2, respectively. If the variance
of ε increases moderately with E, CPUE2 is still expected to per-
form well (Petrere Jr. et al., 2008). Data on catch and effort are
usually not available for all quadrats to establish these indices,
in other words, not all quadrats are fished. In this situation, a
possibility of estimation is simply to use the observed data. This
might not be the best option. According to Walters (2003), if a
spatial correlation structure between catch rates is found, spatial
statistics can be used for extrapolation to grid squares where no
fishing took place, before calculating any abundance index. More-
over, this author claims that covariates such as water temperature
can be used to provide estimates of the spatial trend. The oceanic
surface temperature is an important covariate, as several studies
show that it is correlated with CPUE (Dow et al., 1975; Dow, 1980;
Evans et al., 1995; Fonteneau, 1995; Lima et al., 2000; Goodyear,
2003).

In this work a model was utilized for the variables catch and
effort, whose covariance structure is described by a model of linear
coregionalization (Gelfand et al., 2004), from now on this model
will be called special bivariate model (SBM). This was one of the
models investigated in the spatial analysis of catch and effort data.
The choice was based on observations of Walters (2003) on the
use of spatial statistical techniques and covariates and also taking
into consideration that in practice the observed data are bivariate
(catch and effort) (ICCAT, 2007), besides other characteristics that
are inherent to certain fishing data sets, e.g., the existence of spatial
correlation (Swain and Wade, 2004; Walters, 2003), relationship
between catch and effort and that the effort can be considered ran-
dom since it may depend, for example, on the commercial value
of the target species, time of year, climate conditions, sea surface
temperature, perception of fishermen of a fish stock (observation
or non-observation), information from other fishermen (Sanchéz et
al., 2004; Walters and Martell, 2004; Hilborn and Walters, 1992).
Besides describing the structure of covariance between variables
catch and effort and the spatial correlation, the model SBM shapes
the structure of the cross covariance, i.e., the covariance between
the effort at any location si and catch at location sj, and vice versa.
In other words, the observations (Ei, Ci) are treated as a sample of a
bivariate spatial process. A fitting of the proposed model makes the
extrapolation of catch and effort possible to quadrats that were not
observed. Besides the linear coregionalization model, it was fitted a
bivariate model was fitted in which catch and effort are considered
spatially independent, from now on called bivariate model without
spatial component (BMWSC).

Since the CPUE indices are used in the assessment of fish stocks it
is important to assess the performance of the three indices (CPUE1,
CPUE2 or CPUE3) in different scenarios. Above all, it is essential to
use methods that estimate each index accurately. Petrere Jr. et al.
(2008) conducted a simulation study to compare CPUE1, CPUE2 and
CPUE3. However, these indices were not studied in the presence of
spatial correlation.

We suggest that the indices CPUE1, CPUE2 and CPUE3 be esti-
mated as follows: by extrapolation of catch and effort to unfished
quadrats; for this purpose one of the above models was adjusted,
according to the Bayesian approach; after the extrapolation the
indices CPUE1, CPUE2 and CPUE3 were estimated based on the data
set consisting of observed and predicted values.

The objectives of this study were:

(i) to compare the statistical behavior of the estimates of three
indices (CPUE1, CPUE2 and CPUE3), estimated when using the
SBM model, based on simulated data sets of different scenarios;

(ii) to compare the estimates calculated through the interpolation
of catch and effort in those not observed quadrats using the
SBM and BMWSC models.

2. Materials and methods

The geostatistical techniques used here assume that the vari-
ables to be modelled follow normal distribution. The distributions
of variables catch and effort are generally asymmetrical and in
many cases the logarithmic transformation is sufficient to correct
the lack of normality (Abuabara, 1996; Sanchéz et al., 2004). To per-
form the simulation study it was therefore assumed that catch and
effort follow normal distribution in the logarithmic scale. In the fol-
lowing we describe the utilized models in the simulation studies
and the inference procedures.

2.1. Spacial bivariate model (SBM)

When using Gelfand et al. (2004) model, the catch and effort
observations across a region are treated as a sample from a bivariate
spatial process. The proposed model, easily interpretable and com-
puter processable, creates a structure of flexible covariance, where
the ranges (i.e., the distance beyond which there is practically no
spatial correlation between data points) associated with the vari-
ate are not necessarily the same. The authors show that there is an
equivalence, based on reparametrization of the conditional speci-
fication given by Eq. (1) and the unconditional specification of the
model.

Clearly there is a cause/effect between effort /catch. So when
conditioning the model effort comes first, then capture. So, the
logarithm of the fishing effort (Y1) is modelled first and then the
logarithm of catch, given by the logarithm of effort:

Y1(s) = ˇ01 + ˇ11temp(s) + �1w1(s)
Y2(s)

∣∣Y1(s) = ˇ02 + ˇ12temp(s) + ˛Y1(s) + �2w2(s) + �2u2(s),
(1)

where temp(s) represents the temperature at location s, w1(s) and
w2(s) are Gaussian spatial processes with mean zero and variance
1, independent, but not identically distributed, and u2(s) has dis-
tribution N(0,1). The term ˇ01 + ˇ11temp(s) in Eq. (1) determines
the expected value of the logarithm of effort for a location s and
ˇ02 + ˇ12temp(s) + ˛(ˇ01 + ˇ11temp(s)), determines the expected
value of the logarithm of capture. �1w1(s) and ˛�1w1(s) + �2w2(s)
accounts for spatial correlation in these quantities (effort and catch,
respectively). The term �2u2(s) is responsible for microescale vari-
ation (nugget effect).The adopted correlation function was the
exponential �(d)=exp(−�d), with parameter �1 for Y1 and �2 for Y2,
where d is the distance between any two points s, s′. The parameter
�, expresses how quickly the correlation drops to zero.

The use of conditional specification; the model for Y1(s) must not
have a white noise component to ensure equivalence. The model
written in its conditional form may have a pure nugget effect in the
first equation. This occurs when spatial correlation is practically
null, albeit in its presence, that is, when the correlation function
parameter of the first equation (effort equation) is positive, we
have for this equation a pure spatial effect. The remaining varia-
tion is inherited from the second equation, as in this equation Y2(s)
is written in function of Y1(s).

Considering the model in its conditional form we have a
large computational advantage, since instead of dealing with one
covariance matrix 2n × 2n, two covariance matrices n × n are used
(Gelfand et al., 2004).

Given any location s, it may be shown that the correlation
between Y1(s) (logarithm of effort) and Y2(s) (logarithm of catch) is
given by

�Y1,Y2 = ˛�2
1√

�2
1 (˛2�2

1 + �2
2 )

(2)

in which ˛�2
1 is the covariance between Y1(s) and Y2(s), �2

1 is the
variance of Y1(s) and ˛2�2

1 + �2
2 is the variance of Y2(s).
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