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a b s t r a c t

The gillnet data of walleye (Sander vitreus), yellow perch (Perca flavescens), and white perch (Morone amer-
icana), collected by a fishery-independent survey (Lake Eire Partnership Index Fishing Survey, PIS) from
1989 to 2008, contained 75–83% of zero observations. AdaBoost algorithm was applied to the model
analyses with such fishery data for each species. The 3- and 5-fold cross-validations were conducted
to evaluate the performance of each candidate model. The performance of the delta model consisting
of one generalized additive model and one AdaBoost model (Delta-AdaBoost) was compared with five
candidate models. The five candidate models included: the delta model comprising two generalized lin-
ear models (Delta-GLM), the delta model comprising two generalized linear models with polynomial
terms up to degree 3 (Delta-GLM-Poly), the delta model comprising two generalized additive models
(Delta-GAM), the generalized linear model with Tweedie distribution (GLM-Tweedie), and the general-
ized additive model with Tweedie distribution (GAM-Tweedie). To predict the presence/absence of fish
species, the performance of AdaBoost model was compared in terms of error rate with conventional
generalized linear and additive models assuming a binomial distribution. Results from 3- and 5-fold
cross-validation indicated that Delta-AdaBoost model yielded the smallest training error (0.431–0.433
for walleye, 0.528–0.519 for yellow perch and 0.251 for white perch) and test error (0.435–0.436 for
walleye, 0.524 for yellow perch and 0.254–0.255 for white perch) on average, followed by Delta-GLM-
Poly model for yellow perch and white perch, and Delta-GAM model for walleye. In the prediction of the
presence/absence of fish species, AdaBoost model had the lowest error rate, compared with generalized
linear and additive models. We suggested AdaBoost algorithm to be an alternative to deal with the high
percentage of zero observations in the catch and bycatch analyses in fisheries studies.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Catch and bycatch rate estimations play an indispensable role in
fish stock assessment and management (Gunderson, 1993; Helser
and Hayes, 1995; Maunder and Punt, 2004). Various methods have
been developed to estimate the catch and bycatch rates for a spe-
cific fishery. The commonly used methods include the ratio method,
which determines catch rates relative to a standard value (Beverton
and Holt, 1957); the generalized linear model, which incorpo-
rates multiple variables to describe the environmental and fishing
effects (Gavaris, 1980; Kimura, 1981); and the generalized additive
model, which demonstrates the nonlinear relationship between
the catch/bycatch rate and explanatory variables through a smooth
function (Bigelow et al., 1999; Damalas et al., 2007). However, these
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methods have difficulties in dealing with the highly skewed data
where a large amount of zeros are included. Such data are fre-
quently encountered in the catch analyses of rare species and the
bycatch analyses (Maunder and Punt, 2004; Ortiz et al., 2000). The
presence of zeros may invalidate the assumptions of normality we
usually use, and may cause computational difficulties.

Ignorance of a considerable proportion of zeros may result in a
loss of information that reflects the spatial or temporal distribu-
tion characteristics of fish stocks. Two types of approaches have
been applied in previous studies to deal with zeros in fishery data
analyses. One approach is to add a small constant to each zero
observation of the response variable, followed by a generalized
linear or additive model analysis (Maunder and Punt, 2004; Ortiz
et al., 2000; Shono, 2008). However, the estimation results are sen-
sitive to the choice of the constant (Maunder and Punt, 2004; Ortiz
et al., 2000). The other approach is to utilize the delta model and
the Tweedie distribution model. In the delta model, the positive
values are fitted by a generalized linear or additive model, and
the probabilities of observing zero values are fitted by a gener-
alized linear or additive model with an assumption of binomial
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distribution (Lo et al., 1992; Maunder and Langley, 2004;
Stefansson, 1996; Ye et al., 2001). Although combining two
sub-models complicates the model interpretation in that the
explanatory variables may differ in two sub-models, the delta
model has been widely used to estimate bycatch (Murray, 2004;
Ortiz et al., 2000), catch rate, and abundance index (Lo et al.,
1992; Stefansson, 1996; Ye et al., 2001). By contrast, the Tweedie
distribution model handles zero data uniformly along with the pos-
itive data, where the Tweedie distribution is considered to be a
Poisson–Gamma compound distribution when its power parame-
ter is greater than 1 but less than 2 (Shono, 2008; Tweedie, 1984).
The Tweedie distribution model has been judged to outperform the
generalized linear model with an additive constant and the delta
model composed of two generalized linear models (Shono, 2008).

AdaBoost is a typical boosting algorithm that was originally
used for classification problems. The algorithm used for classifi-
cation is called a classifier. The final strong classifier is obtained by
successively applying a classification algorithm to reweighted data
and then combining a sequence of weak classifiers that minimize
the prediction error at each iteration (Freund and Schapire, 1996;
Friedman et al., 2000; Hastie et al., 2001; Kawakita et al., 2005). In
a fishery context, zeros and positive values can be converted into a
categorical variable {−1,1}, indicating the events of no fish caught
and the events of at least one fish caught, respectively, and then
the problem can be treated as a two-group classification problem
(Kawakita et al., 2005). This method has been used to predict the
occurrence of large silky shark bycatch in a tuna purse-seine fish-
ery, and the results confirmed the superiority of AdaBoost model
in bycatch analyses where data were skewed by zeros (Kawakita
et al., 2005).

The present study was based on the gillnet data collected from a
fishery-independent survey, the Lake Erie Partnership Index Fish-
ing Survey (PIS). The PIS survey was primarily operated by the
Ontario Ministry of Natural Resources (OMNR) and the Ontario
Commercial Fisheries Association (OCFA) since 1989. The exper-
imental gillnets with mesh size ranging from 32 to 152 mm
were deployed across the Ontario waters of Lake Erie in the fall
(August–November) annually, using commercial fishing vessels
and commercial fishing crews (OCFA, 2007).

We focused on three species in this analysis, walleye (Sander
vitreus), yellow perch (Perca flavescens), and white perch (Morone
americana). Walleye and yellow perch dominate the commercial
gillnet fisheries in Lake Erie (Kinnunen, 2003; Thomas and Haas,
2005), and white perch has imposed considerable influences on
fish communities and the lake ecosystem as an invasive species
(Parrish and Margraf, 1990; Schaeffer and Margraf, 1987; Scott and
Crossman, 1973).

In the present study, the delta model comprising one general-
ized additive model and one AdaBoost model (Delta-AdaBoost) was
developed to estimate the catch rates of walleye, yellow perch and
white perch based on the PIS data from 1989 to 2008. The per-
formance of the Delta-AdaBoost model was compared with five
candidate models, including the delta model comprising two gen-
eralized linear models (Delta-GLM), the delta model comprising
two generalized linear models with polynomial terms up to degree
3 (Delta-GLM-Poly), the delta model comprising two generalized
additive models (Delta-GAM), the generalized linear model with
Tweedie distribution (GLM-Tweedie), and the generalized additive
model with Tweedie distribution (GAM-Tweedie). The perfor-
mance of the AdaBoost model to predict the presence/absence
of fish species was compared in terms of error rate with the
generalized linear and additive model assuming a binomial dis-
tribution. Each model was evaluated through the 3- and 5-fold
cross-validation. The goals of this study were (1) to evaluate the
performance of the Delta-AdaBoost model and the AdaBoost model
in analyzing the fishery data with high percentage of zeros and

(2) to explore the application of AdaBoost algorithm in fishery
studies.

2. Methods

2.1. Data and variables

We estimated the catch rates of walleye, yellow perch, and white
perch using the PIS data from 1989 to 2008 provided by OCFA. The
PIS data included a large number of zero observations (75–83%), and
as a result, the commonly used assumption on normal or lognormal
distribution was violated (Ortiz et al., 2000). Totally 53,662 records
were available for analysis and the catch rate was expressed as
catch in weight (kg) per net (30.5 m long × 1.8 m deep).

Fourteen explanatory variables were available: nine continuous
variables, i.e., site depth, gear depth, secchi depth, gear temper-
ature, dissolved oxygen, soak time, site temperature, longitude,
and latitude; five categorical variables, i.e., basin (five basins), year
(twenty years), month (four months), gear type (two gear types),
and mesh size (fourteen mesh sizes). Site temperature is the water
surface temperature. Gear temperature means the water tempera-
ture at the gear set depth. Gear type refers to canned or bottomed
gillnets.

The correlation coefficients among all explanatory variables
were examined to detect those that were highly correlated. A pre-
liminary stepwise selection based on Akaike Information Criterion
(AIC, Akaike, 1974) was further conducted to eliminate one of the
correlated pair of variables, i.e., the variable that yielded a larger
AIC value was eliminated from the correlated pair. The remain-
ing variables were selected through a stepwise procedure based
on AIC (Akaike, 1974; Burnham and Anderson, 2002). The model
with smaller AIC was considered to fit the data better. Interaction
terms were not included in the regression model to avoid additional
multicollinearity problems and difficulties in model interpretation
(Damalas et al., 2007; Maunder and Punt, 2004).

2.2. Delta model and Delta-AdaBoost model

A delta model usually consists of two components, one model
to fit the positive values and the other to estimate the probability
of obtaining non-zero captures. Estimates of the catch rate from a
delta model can be obtained by multiplying these two components
(Lo et al., 1992; Maunder and Punt, 2004; Murray, 2004; Ortiz et al.,
2000; Pennington, 1996; Stefansson, 1996; Ye et al., 2001):

Catch ratê = d̂ × q̂,

where Catch ratê is the estimate of catch rate, d̂ is the estimate
of catch rate when only positive values of the response variable
are analyzed, and q̂ is the estimate of the probability of obtaining
non-zero captures.

In the delta model, the model to fit the positive values could
be a generalized linear model (Eq. (1)), a generalized linear model
with polynomial terms up to degree 3 (Eq. (2)), or a generalized
additive model (Eq. (3)), which were built by assuming a lognormal
distribution as follows:
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