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Abstract

The zero-inflated negative binomial (ZINB) regression model with smoothing is introduced for modeling count data with many zero-valued
observations, and its use is illustrated with shark bycatch data from the eastern Pacific Ocean tuna purse-seine fishery for 1994-2004. Based on the
generalized information criterion, the ZINB regression model provided a better fit to the data than either Poisson, negative binomial or zero-inflated
Poisson regression models. To demonstrate the utility of the ZINB regression model for the standardization of catch data, standardized temporal
trends in bycatch rates estimated with the ZINB regression model are computed and compared to those obtained from fits of the other three types
of models to the same data. With the exception of the negative binomial, estimated temporal trends were more similar among models than would
have been inferred from an analysis of model fit. Comparison of trends among models suggests that the negative binomial regression model may

overestimate model coefficients when fitted to data with many zero-valued observations.
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1. Introduction

Count data on the catch of non-target species, and some tar-
get species, can have many zero-valued observations, but also
include large values when aggregations of animals are caught.
This is often true for species such as sharks (e.g., Bigelow et al.,
1999; Ward and Myers, 2005). Modeling these data is essential
to the estimation of trends in catch rates and for understanding
processes that lead to increased, or decreased levels of catch.
However, the true stochastic processes that generated the data
are usually not known. Although such data have been mod-
eled with a Poisson distribution (e.g., Walsh and Kleiber, 2001)
or aggregated by fishing effort and modeled with a lognormal
distribution (e.g., Simpfendorfer et al., 2002), the existence of
data with an excess of zero-valued observations (i.e., more than
expected from a Poisson process) has led to the development
of models that expressly relate covariates to the occurrence of
excess zeros (e.g., Welsh et al., 1996; Barry and Welsh, 2002;
O’Neill and Faddy, 2003; Lemos and Gomes, 2004).
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There are two commonly used types of mixture distributions
for unaggregated count data that contain an excess of zeros:
(1) models that treat the presence/absence of catch separately
from positive catch (“delta-F” models), and (2) models that treat
zero catch separately from events in which catch could occur
(“zero-inflated” models). ! These models differ somewhat in
both their formulation and interpretation. delta-F models are
two-part models that describe the probability of no catch sep-
arately from the probability of positive catch. The probability
of no catch is typically assumed to follow a logistic model, and
positive catches are typically assumed to follow a log-linear
model based on either a truncated Poisson or truncated negative
binomial distribution (e.g., Welsh et al., 1996; Barry and Welsh,
2002; O’Neill and Faddy, 2003). In terms of their interpretation,
delta-F models make a distinction between covariates associ-
ated with no catch and those associated with non-zero catch.

! The negative binomial distribution (e.g., Lawless, 1987), which can be
viewed as a mixture model that extends the Poisson distribution (e.g., McCullagh
and Nelder, 1991), has been used for count data (e.g., Ward and Myers, 2005).
However, it does not expressly relate covariates to the occurrence of excess
Zeros.


mailto:mminami@ism.ac.jp
dx.doi.org/10.1016/j.fishres.2006.10.019

M. Minami et al. / Fisheries Research 84 (2007) 210-221 211

delta-F models are also referred to as hurdle models (Simonoff,
2003).

Zero-inflated models are also expressed in two parts: the
probability of being in a ‘perfect-state’ (e.g., no catch), and
the probability of being in an ‘imperfect-state’ where positive
events (e.g., catch) may occur, but are not certain. That is, the
imperfect-state includes both zero and non-zero values. Zero-
inflated models have been used in other areas of research (e.g.,
Lambert, 1992; Greene, 1994; Hall, 2000; Agarwal et al., 2002;
Siminoff, 2003), but appear to be only rarely used in the anal-
ysis of fisheries data (Welsh et al., 1996). The perfect-state
is typically modeled with a logistic, and a complete Poisson
or complete negative binomial distribution is assumed for the
imperfect state. These models are referred to as zero-inflated
Poisson (ZIP) and zero-inflated negative binomial (ZINB) mod-
els, respectively. In terms of their interpretation, zero-inflated
models make a distinction between covariates associated with
the perfect state (no catch) and covariates associated with the
imperfect state in which catch can occur, but is not certain.

Conceptually, zero-inflated models may be more appropriate
for catch data of infrequently encountered species, particularly
when processes leading to catch of these species are poorly
understood. For example, it may be plausible to assume that
a species has a preferred habitat. Samples collected in the pre-
ferred habitat would be expected to yield animals, while samples
collected in other habitats would be expected to yield no ani-
mals. However, in practice, even when samples are collected in
the preferred habitat, sampling variability would be expected to
occasionally produce samples with no animals. Perhaps more
importantly, in practice, the exact characteristics of preferred
habitat are not often known, further complicating the interpre-
tation of zero-valued observations. In such a situation, a delta-F
model fitted to the data would incorrectly pool zero-valued
observations that potentially result from separate processes. By
contrast, zero-inflated models can utilize information in covari-
ates to determine to which process zero-valued observations
might belong. ZIP models might be considered appropriate for
species that are caught infrequently, but when present occur in
small groups, whereas ZINB models may be more appropriate
for the data of species that when present, can occur in large
aggregations.

In this manuscript we introduce the ZINB regression model
with smoothing. The ZINB regression model with smoothing is
an extension of the classical generalized additive model (GAM;
Hastie and Tibshirani, 1991). GAMs are one of several tools
frequently used to standardize catch per unit effort (CPUE)
data, (e.g., Maunder and Punt, 2004). To fit the ZINB model,
we employ thin plate regression splines (Wood, 2003), a vari-
ant of smoothing splines that avoids complications associated
with the treatment of ‘knots’. To illustrate the use of the ZINB
regression model as a tool for CPUE standardization, we esti-
mate temporal trends in the bycatch per set of silky sharks in
the eastern Pacific Ocean (EPO) purse-seine fishery for tunas
associated with floating objects. We compare characteristics of
ZINB regression models fitted to these data, with and without
smoothing, to characteristics of ZIP, negative binomial and Pois-
son regression models fitted to the same data. Partial dependence

plots (Hastie et al., 2001) are used to summarize temporal trends
in bycatch per set for each of the models, taking into consid-
eration the average effects of other predictors. Comparison of
temporal trends among models illustrates important differences
in the way in which the negative binomial and the ZINB fit highly
skewed count data.

2. Data

Data on the incidental mortality of silky sharks (nominally
Carcharhinus falciformis; Roman-Verdesoto and Orozco-
Z6ller, 2005; Minami et al., 2006) collected by IATTC observers
onboard large tuna vessels of the international purse-seine fleet
between 1994 and 2004 were used to demonstrate the ZINB
model. Observers go to sea aboard the largest size category
of fishing vessels (> 363 metric tons fish-carrying capacity) in
order to collect data on the incidental mortality of dolphins and
details of fishing operations. Additionally, these observers col-
lect data on the local environment, the amounts and species of
tuna caught, and, since 1993, the bycatches of non-mammal
species. The term bycatch will be used herein in place of
‘catch’ to refer to the incidental mortalities of any non-target
species. Target species for this fishery are yellowfin tuna (Thun-
nus albacares), skipjack tuna (Katsuwonus pelamis), and bigeye
tuna (Thunnus obesus).

Purse-seine sets are categorized into three types according
to the intent of the fishermen. Fishermen may target tunas
associated with marine mammals, tunas associated with float-
ing objects, or unassociated schools of tunas. Floating objects
include both fish-aggregating devices (FADs) and flotsam,
although since 1996, more than 80% of the objects used have
been estimated to be FADs (IATTC, 2005). FADs are typically
equipped with some form of relocation equipment, such as a
radio beacon or a satellite transmitter. We demonstrate the use
of the ZINB model with data from purse-seine sets on tunas
associated with floating objects (hereafter referred to as ‘float-
ing object’ sets). In the last decade, floating object sets were
largely made within two longitudinal bands north and south
of the equator, extending from the coast to as far offshore as
approximately 170" W (Watters, 1999). Sampling coverage for
data on non-mammal bycatch in floating object sets by IATTC
observers over this 11-year period was generally greater than
64% annually (IATTC, 2006). After processing, data on 32,148
floating object sets made between 1994 and 2004 were available
for analysis. Details of data processing can be found in Minami
et al. (2006).

The silky shark bycatch data are characterized by many zero-
valued observations and a long right tail (Fig. 1). Annually,
the percentage of sets with no reported silky shark bycatch has
increased from approximately 40% between 1994 and 1998 to
over 60% since 2001. Overall, 51% of sets had no bycatch of
silky sharks (Fig. 1). When silky shark bycatch did occur, sets
involving up to about 20 animals were relatively common (Fig.
1). The large percentage of zero-bycatch sets, combined with the
fact that occasional sets had bycatches of 10-100s of animals,
do not lend the analysis of these data to simple models that are
sometimes used for count data (e.g., Poisson).
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