
Covert Computation d Hiding code in code
through compile-time obfuscation5

Sebastian Schrittwieser a,*, Stefan Katzenbeisser b, Peter Kieseberg c,
Markus Huber c, Manuel Leithner c, Martin Mulazzani c, Edgar Weippl c

aVienna University of Technology, Favoritenstraße 9e11/188, 1040 Vienna, Austria
b Security Engineering Group, Darmstadt University of Technology, Hochschulstraße 10, 64289 Darmstadt, Germany
cSBA Research, Favoritenstraße 16, 1040 Vienna, Austria

a r t i c l e i n f o

Article history:

Received 29 July 2013

Received in revised form

25 September 2013

Accepted 30 December 2013

Keywords:

Code obfuscation

Side effect

Code steganography

Semantic-aware malware detection

Compile-time obfuscation

a b s t r a c t

Recently, the concept of semantic-aware malware detection has been proposed in the

literature. Instead of relying on a syntactic analysis (i.e., comparison of a program to pre-

generated signatures of malware samples), semantic-aware malware detection tries to

model the effects a malware sample has on the machine. Thus, it does not depend on a

specific syntactic implementation. For this purpose a model of the underlying machine is

used. While it is possible to construct more and more precise models of hardware archi-

tectures, we show that there are ways to implement hidden functionality based on side

effects in the microprocessor that are difficult to cover with a model. In this paper we give a

comprehensive analysis of side effects in the x86 architecture and describe an imple-

mentation concept based on the idea of compile-time obfuscation, where obfuscating

transformations are applied to the code at compile time. Finally, we provide an evaluation

based on a prototype implementation to show the practicability of our approach and es-

timate complexity and space overhead using actual malware samples.

ª 2014 Elsevier Ltd. All rights reserved.

1. Introduction

During the last decade, malware detection has become a

multi-billion dollar business and an important area in aca-

demic research alike. Static analysis, still the predominant

technique for client based malware detection (commonly

known as virus scanners), has not changed much during the

last years. Current virus scanners almost entirely rely on

signature based detection mechanisms (Christodorescu and

Jha, 2004; Griffin et al., 2009). Malware, on the other side, has

evolved significantly throughout the years and often uses

sophisticated code obfuscation techniques in order to make

detection more difficult. Encryption, polymorphism as well as

metamorphism are commonly deployed to defeat signature

based detection mechanisms by hiding the malicious func-

tionality in data sections of the binary that look different for

each instance of the malware.

To increase detection rates of obfuscated malware, new

paradigms of malware analysis have been proposed.

Semantic-aware malware detection, which was first intro-

duced by Christodorescu et al. (2005), aims at solving some of

5 This paper is an extended version of the conference paper (Schrittwieser et al., 2013).
* Corresponding author. Tel.: þ43 1 5053688.
E-mail addresses: sebastian.schrittwieser@tuwien.ac.at (S. Schrittwieser), skatzenbeisser@acm.org (S. Katzenbeisser), pkieseberg@

sba-research.org (P. Kieseberg), mhuber@sba-research.org (M. Huber), mleithner@sba-research.org (M. Leithner), mmulazzani@sba-
research.org (M. Mulazzani), eweippl@sba-research.org (E. Weippl).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 6

0167-4048/$ e see front matter ª 2014 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cose.2013.12.006

mailto:sebastian.schrittwieser@tuwien.ac.at
mailto:skatzenbeisser@acm.org
mailto:pkieseberg@sba-research.org
mailto:pkieseberg@sba-research.org
mailto:mhuber@sba-research.org
mailto:mleithner@sba-research.org
mailto:mmulazzani@sba-research.org
mailto:mmulazzani@sba-research.org
mailto:eweippl@sba-research.org
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2013.12.006&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

the limitations of signature-based detection strategies by

using so-called templates which define malicious behavior

independently of its actual implementation. This approach

makes the malware detection system more resistant against

some types of obfuscating transformations such as garbage

insertion (Collberg et al., 1997) and equivalent instruction

replacement (De Sutter et al., 2009). However, amajor limitation

of this approach is its dependency on an accuratemodel of the

underlying hardware (i.e., the microprocessor). In order to be

able to evaluate the maliciousness of a sequence of processor

instructions this model has to be detailed enough to map all

effects on the hardware’s state.

In this paper we show that exactly this fundamental pre-

requisite for semantic-aware malware detection is difficult to

achieve.We introduce a concept called COVERT COMPUTATION that

is based on the idea of implementing program functionality in

side effects of the microprocessor that are not covered by a

simple machine model. In contrast to packer-based obfusca-

tion which hides code in data sections that cannot be evalu-

ated in static analysis scenarios, we go one important step

further in this paper by hiding (malicious) code in real code.

The main advantage of this approach over previous ones is

that hidden functionality is not identifiable for syntactic

malware detectors and extremely difficult to detect with se-

mantic analysis techniques. In detail, the main contributions

of this paper are:

� We introduce a novel approach for code obfuscation called

COVERT COMPUTATION, based upon side effects in today’s

microprocessor architectures. It hides (potentially mali-

cious) code in legitimate code.

� We provide a comprehensive collection of side effects for

Intel’s x86 architecture and show how they can be used to

hide (potentially) malicious functionality in executables.

� We describe a proof-of-concept implementation of our

obfuscation technique that is performed at compile-time.

� We finally evaluate the security of our obfuscation

approach against semantic-aware malware detection,

measure the performance based on our prototype and

provide a theoretical discussion on the effects of this

obfuscation technique on real-life malware samples.

The remainder of the paper is organized as follows: In

Section 2 we discuss related work in the area of malware

obfuscation as well as malware detection. In Section 3 we

introduce side effects of Intel’s x86 instruction set and

describe how they can be used to hide malicious functionality

inside harmless looking code. In Section 4 we propose our

concept of compile-time obfuscation and present a prototype

implementation based on the LLVM compiler infrastructure.

An extensive evaluation of our concept is described in Section

6. Finally, we summarize the main contributions of our paper

and draw conclusions in Section 7.

2. Related work

Today’s malware obfuscation approaches often follow the

simple concept of hiding malicious code by packing or

encrypting it as data that cannot be interpreted by the

machine (Nachenberg, 1997). At runtime, an unpacking

routine is used to transform the data block back intomachine-

interpretable code. Polymorphism (Song et al., 2007) and

metamorphism (O’Kane et al., 2011) can be seen as improve-

ments to the packer concept aiming at making automated

malware detection more difficult. Another variant of packing

was introduced by Wu et al. (2010). Their approach e called

mimimorphism e encodes the program’s code as harmless

looking code, which is not detectable with previous concepts

(such as entropy analysis) as the packed code appears to be

code itself. Resulting binaries follow an unobtrusive statistical

distribution of instructions and thus are able to trick malware

detectors that work on the syntactical layer. However, this

concept would not withstand a semantic code analysis. Even

though the packed code looks like real code, it is just a

sequence of functionally unrelated instructions without any

semantic meaning.

On the other side of the arms race the detection and

analysis of packed malware has been studied for many years.

Many approaches are based on static code analysis. Encrypted

code is identifiable based on entropy analysis as shown by

Lyda and Hamrock (2007). Bruschi et al. (2006) described an

approach for detecting self-mutating malware by matching

the inter-procedural control flow graph of software against

malware samples. The authors argue that despite its self-

mutating nature, the control flow graph of this type of mal-

ware is still characteristic enough for reliable detection.

In contrast to the detection of packer-based obfuscation,

the analysis of the actual semantics of code was proposed in

literature using different approaches. The idea of using model

checking for detectingmalicious codewas proposed by Kinder

et al. (2005). Christodorescu et al. (2005) described the concept

of semantic-aware malware detection, aiming at matching

code with predefined templates specifying malicious

behavior; matching of malicious code still works even if the

actual implementation of the malicious behavior slightly dif-

fers from the reference implementation in the template. Dalla

Preda et al. further formalized the approach of semantic-

aware malware detection in 2007 (Dalla Preda et al., 2007)

and 2008 (Dalla Preda et al., 2008). An important aspect of this

type of malware detection is that is heavily depends on the

quality of the model of the underlying hardware as the effects

of a sequence of instructions has to be matched against the

effects of a malware template. The first theoretical discussion

on the idea of forcing a detection system into incompleteness

was presented by Giacobazzi (2008). However, no practical

approach of this idea was given in the paper. Moser et al.

(2007) discussed the question whether static analysis alone

allows reliable malware detection. The authors argue that

semantic-aware detection systems are only effective against

malware that is not protected against this particular analysis

method and prove their claim with a new binary obfuscation

schema that successfully prevents malware identification

even by semantic-aware detectors. The paper concludes that

simple obfuscation techniques can reliably hide the purpose

of a program’s code, and thus clearly shows the limits of static

analysis.

Another approach against the threat of malware is to

dynamically analyze the behavior of software in order to

identify malicious routines (Willems et al., 2007). Sharif et al.

c om p u t e r s & s e c u r i t y 4 2 (2 0 1 4) 1 3e2 614

http://dx.doi.org/10.1016/j.cose.2013.12.006
http://dx.doi.org/10.1016/j.cose.2013.12.006

Download	English	Version:

https://daneshyari.com/en/article/454459

Download	Persian	Version:

https://daneshyari.com/article/454459

Daneshyari.com

https://daneshyari.com/en/article/454459
https://daneshyari.com/article/454459
https://daneshyari.com/

