
Malware target recognition via static heuristics5

T. Dube a,*, R. Raines a, G. Peterson a, K. Bauer a, M. Grimaila a, S. Rogers b

aAir Force Institute of Technology, Wright-Patterson AFB, OH 45433-7765, USA
b Sensors and Information Directorates, Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7321, USA

a r t i c l e i n f o

Article history:

Received 12 April 2011

Received in revised form

1 September 2011

Accepted 9 September 2011

Keywords:

Malware detection

Intrusion detection

Malware

Situation awareness

Machine learning

a b s t r a c t

Organizations increasingly rely on the confidentiality, integrity and availability of their

information and communications technologies to conduct effective business operations

while maintaining their competitive edge. Exploitation of these networks via the

introduction of undetected malware ultimately degrades their competitive edge, while

taking advantage of limited network visibility and the high cost of analyzing massive

numbers of programs. This article introduces the novel Malware Target Recognition (MaTR)

system which combines the decision tree machine learning algorithm with static heuristic

features for malware detection. By focusing on contextually important static heuristic

features, this research demonstrates superior detection results. Experimental results on

large sample datasets demonstrate near ideal malware detection performance (99.9þ%

accuracy) with low false positive (8.73e-4) and false negative rates (8.03e-4) at the same

point on the performance curve. Test results against a set of publicly unknown malware,

including potential advanced competitor tools, show MaTR’s superior detection rate (99%)

versus the union of detections from three commercial antivirus products (60%). The

resulting model is a fine granularity sensor with potential to dramatically augment

cyberspace situation awareness.

Published by Elsevier Ltd.

1. Introduction

Malware heuristic analysis techniques generally fall into two

distinct categories: static and dynamic (Szor, 2005). Static

heuristics generally use non-runtime indicators (Szor, 2005),

such as structural anomalies, program disassembly and n-

grams (Schultz et al., 2001; Kolter and Maloof, 2004; Abou-

Assaleh et al., 2004; Kolter and Maloof, 2006; Henchiri and

Japkowicz, 2006). Alternatively, dynamic heuristics employ

runtime indicators (Szor, 2005) normally obtained in virtual

environments, such as commercial sandbox applications

(Sunbelt Software, 2009; Norman ASA, 2009; ThreatExpert Ltd,

2009) or emulation capabilities of antivirus products (Szor,

2005; Symantec Corp., 1997).

Despite the success that static heuristics enjoyed during

the 1990s (Szor, 2005), today’s research and commercial anti-

virus products heavily favor dynamic heuristics (Szor, 2005;

Symantec Corp., 1997; Lee and Mody, 2006; Bailey et al., 2007;

Christodorescu et al., 2007; Dinaburg et al., 2008). Antivirus

companies use a hybrid of static and dynamic heuristics in

their commercial products (Szor, 2005; Symantec Corp., 1997).

Most static heuristics require a pristine disassembly, which is

difficult to achieve (Moser et al., 2007). Dynamic heuristics

avoid this limitation (Moser et al., 2007), because they do not

require disassembly, but rather observe program execution in

a restricted environment for a specified observation period.

Observing program behavior requires all program dependen-

cies to be present (Szor, 2005), which is a stronger requirement

5 Patent pending.
* Corresponding author. Tel.: þ1 937 255 3636x4690; fax: þ1 937 904 7979.
E-mail address: thomas.dube@afit.edu (T. Dube).

Available online at www.sciencedirect.com

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 1 3 7e1 4 7

0167-4048/$ e see front matter Published by Elsevier Ltd.
doi:10.1016/j.cose.2011.09.002

mailto:thomas.dube@afit.edu
www.sciencedirect.com/science/journal/01674048
http://www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2011.09.002
http://dx.doi.org/10.1016/j.cose.2011.09.002
http://dx.doi.org/10.1016/j.cose.2011.09.002

for dynamic heuristics than static heuristics. The program

may not successfully execute in the test environment when

a required runtime library is absent.

Dynamic heuristic methods are generally slower than

static methods (Symantec Corp., 1997), because they require

an observation duration and emulation overhead. Their

performance makes them operationally infeasible to test tens

of thousands of unique programs on a single system in tactical

situations. Dynamic heuristic analysis is also incomplete

(Cavallaro et al., 2008), because no guarantee of observing

malicious activity within the observation period exists. Many

malware samples require a trigger condition (Cavallaro et al.,

2008) to demonstrate their malicious behavior. For example,

the Michelangelo virus (Software Engineering Institute, 1997)

only executes its payload on March 6, the anniversary of his

birth.

This research extends current malware detection research

in three important ways. First, Malware Target Recognition

(MaTR) demonstrates the utility of using only anomaly and

structural static heuristics for robust malware detection, in

contrast to previous research using the same sources of

information (Schultz et al., 2001). Second, this work also

achieves a significant performance improvement over other

static heuristic malware detection research (Schultz et al.,

2001; Kolter and Maloof, 2004, 2006; Tesauro et al., 1996). For

fair comparison, MaTR competes against a retest of the Kolter

andMaloof n-gram research (Kolter andMaloof, 2004), the best

measures seen in similar work, on a larger dataset. Finally,

a validation test against a publicly unknown malware set

shows MaTR’s superior performance over an n-gram model

and three commercial antivirus products.

The following sections describe related research, MaTR

and another static heuristic detection methodology, and

hypotheses tested. The next topics covered are the experi-

mental comparison of MaTRwith a repeated experiment from

other researchers and results illustratingMaTR’s performance

advantage against a suite of commercial antivirus products.

Conclusions summarize this work and include brief synopses

of limitations, potential impact, and future research.

2. Related work

While malware detection is a popular research area, nearly all

current efforts focus on dynamic heuristic analysis. In static

heuristic analysis, many efforts require the successful static

disassembly of programs, which is commonly augmented by

dynamic methods. Currently, the scope of MaTR is strictly

static heuristic analysis, explicitly restricted to features

readily available by cursory, non-runtime inspection of

a program. This section briefly describes related research in

static heuristic analysis of malware.

2.1. Kephart, Tesauro and Arnold

IBM researchers Kephart, Tesauro and Arnold provide the

seminal research in n-gram analysis of malware. These n-

grams are byte sequences of length n that occur in the target,

which theoretically represent program structural components

and fragments of instructions and data. They examine the use

of n-grams in automatic signature extraction (Kephart and

Arnold, 1994) for malware variants as well as for generic

detection (Tesauro et al., 1996; Arnold and Tesauro, 2000).

While searching for methods to automate signature

extraction for new variants of knownmalware, Kephart, et al.

discover the utility of n-grams for generic malware detection

(Kephart and Arnold, 1994). By determining the probability of

finding specific n-grams in malicious and non-malicious

programs, the authors fabricate a generic malware detection

classifier.

Tesauro et al. successfully use neural networks to detect

boot sector viruses (Tesauro et al., 1996). They manipulate the

decision threshold boundary to increase the cost associated

with false positives as they cite that a single false positive

reading likely affects thousands of systems. Despite signifi-

cant computational and space constraints as well as a small

sample size for training and validation, they achieve a false

positive rate of less than 1% while detecting over 80% of

unknown boot sector viruses.

They train the network with trigrams (3-byte strings) that

undergo a novel feature selection process. Initially, they

canvas the entire sample corpus for trigrams and eliminate all

that are common to both the malicious and non-malicious

sets. Moreover, they reduce the list of trigram features to the

set where each malicious training sample contains at least

four trigrams. This selection process leads to a three order of

magnitude feature reduction.

Expanding on their previous work, Arnold and Tesauro

incorporate a voting system on multiple trained neural

networks (Arnold and Tesauro, 2000). By training multiple

networks with distinct features not used in others, they

effectively avoid the major pitfall associated with heuristic

scanners, high false positive rates. Their assumption is that

these disparately trained networks rarely produce identical

false positives. Szor cites that the Arnold and Tesauro network

research has such a low false positive rate that Symantec

incorporated it into its antivirus product default scanning

(Szor, 2005).

2.2. Schultz et al

Schultz et al. make key contributions by testing three different

sources of features to identifymalware (Schultz et al., 2001). In

their first approach, they examine information from the

portable executable (PE) header as features, such as import

libraries and the number of imported functions from those

libraries, with Cohen’s improved rule learning algorithm

called RIPPER (Cohen, 1995). This method requires unpacking

the samples before evaluation to reveal the true imports, but

the authors do not refer to this difficult step. The second

approach uses strings found in the binaries as features, which

is again problematic without first unpacking.

The third method captures byte sequences expected to

translate loosely to a representation of instructions, data, or

both. Without first unpacking the binary, however, in the best

case one would expect such byte sequences to most likely

represent general program structure, unpacker stub instruc-

tions and offsets, unpacker data, or other global information.

In the worst case, these byte strings may represent packed

information, which is essentially indecipherable data.

c om p u t e r s & s e c u r i t y 3 1 (2 0 1 2) 1 3 7e1 4 7138

http://dx.doi.org/10.1016/j.cose.2011.09.002
http://dx.doi.org/10.1016/j.cose.2011.09.002

Download English Version:

https://daneshyari.com/en/article/454511

Download Persian Version:

https://daneshyari.com/article/454511

Daneshyari.com

https://daneshyari.com/en/article/454511
https://daneshyari.com/article/454511
https://daneshyari.com

