
What the heck is this application doing? – A security-by-
contract architecture for pervasive services5

N. Dragonia, F. Massaccib, T. Walterc,*, C. Schaeferc

aTechnical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark
bUniversity of Trento, Via Sommarive 14, I-38050 Povo (Trento), Italy
cDOCOMO Euro-Labs, Landsberger Strasse 312, 80935 Munich, Germany

a r t i c l e i n f o

Article history:

Received 15 October 2007

Received in revised form

29 May 2009

Accepted 22 June 2009

Keywords:

Security-by-contracts

Security architecture

Pervasive downloads

Pervasive services

Policies

Policy enforcement

a b s t r a c t

Future pervasive environments are characterized by non-fixed architectures made of users

and ubiquitous computers. They will be shaped by pervasive client downloads, i.e. new

(untrusted) applications will be dynamically downloaded to make a better use of the

computational power available in the ubiquitous computing environment.

To address the challenges of this paradigm we propose the notion of security-by-contract

(S�C), as in programming-by-contract, based on the notion of a mobile contract that

a pervasive download carries with itself. It describes the relevant security features of the

application and the relevant security interactions with its computing environment. The

contract can be used to check it against the device policy for compliance.

In this paper we describe the S�C concepts, the S�C architecture and implementation

and sketch some interaction modalities of the S�C paradigm.

ª 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Security and trust have been identified as key issues in the

pervasive computing vision from their earliest inception

(Weiser, 1993). Indeed, the paradigm of pervasive services

(Bacon, 2002) envisions a nomadic user traversing a variety of

environments and seamlessly and constantly receiving

services from other portables, hand-helds, embedded or

wearable computers. Bootstrapping and managing security of

services in this scenario is a major challenge as downloaded

code might be malware using too many resources of the

device or even harm the device.

We argue that the challenge is bigger than the ‘‘simple’’

pervasive service vision because it does not consider the

possibilities that open up when we realize that the smart

phone in our pocket has already more computing power than

the PC encumbering our desk 15 years ago.

Current pervasive services, including context-aware

services, do not exploit the computational power of the mobile

device. Information is provided to the mobile user anywhere

but the computing infrastructure is centralized (Harter et al.,

2002). Even when it is decentralized to increase scalability and

performance (Diot and Gautier, 1999; Chakraborty et al., 2007),

such distribution does not exploit the device’s computing

power.

We believe that the future of pervasive services will be

shaped by pervasive client downloads. When traversing envi-

ronments the nomadic user does not only invoke services

5 This work is partly supported by the project EU-IST-STREP-S3MS (www.s3ms.org). A preliminary, much shorter version of this paper
has been accepted to IEEE SecPerU-07.

* Corresponding author.
E-mail addresses: ndra@imm.dtu.dk (N. Dragoni), massacci@dit.unitn.it (F. Massacci), walter@docomolab-euro.com (T. Walter),

schaefer@docomolab-euro.com (C. Schaefer).

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ier . com/ loca te /cose

0167-4048/$ – see front matter ª 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.cose.2009.06.005

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 6 6 – 5 7 7

http://www.s3ms.org
mailto:ndra@imm.dtu.dk
mailto:massacci@dit.unitn.it
mailto:walter@docomolab-euro.com
mailto:schaefer@docomolab-euro.com
http://www.elsevier.com/locate/cose

according to a web-services-like fashion (either in push or pull

mode) but also download new applications that are able to

exploit the computational power of the user’s device. For

instance, in order to make a better use of the services available

in the environment.

Client downloads create new threats and security risks on

top of the ‘‘simple’’ pervasive service invocation because it

violates the model of mobile software download behind the

Java (Gong and Ellison, 2003) and .NET mobile security archi-

tectures (LaMacchia and Lange, 2002; Paul and Evans, 2004):

� Most pervasive software producers are small and medium

sized enterprises (SME) which cannot afford the costs of

certification necessary to obtainanoperator’s certification and

thus the downloaded application will not run as trusted code.

� A pervasive download is essentially untrusted code whose

security properties we cannot check and whose code

signature (if any) has no degree of trust.

� According to the classical security model the downloaded

untrusted code should be sandboxed, its interaction with

the environment and the device’s own data should be

limited.

� Yet this is against the whole business logic, as we made this

pervasive download precisely to have lots of interaction

with the pervasive environment!

� In almost all cases this code is trustworthy, i.e. not harming

the host system, is being developed to exploit the business

opportunities of pervasive services.

1.1. Contributions of the paper

Given the above considerations, our contributions are as

follows:

� We develop the concept of Security-by-Contract (S�C) as

a mechanism to make the trust-less download of code

possible. S�C covers all stages of the software life-cycle:

from design and development to execution. The key idea

behind S�C is that the result of each stage of the software

life-cycle is verified against defined properties and, if veri-

fication is successful, it is forwarded to the next stage.

Besides generic hardware and software platform proper-

ties, verification may as well take policies into account.

Mobile users have an interest that downloaded code

respects their policies, e.g., which communication

resources can be used to what extent so that malware is

prevented from using too many resources. Mobile opera-

tors have an interest that the application does not harm the

functioning of the mobile device. S�C enables the trust-

worthy (modulo above mentioned properties and policies)

execution of the downloaded code on the user’s mobile

device.

� Although designed to cover the software life-cycle, S�C

provides the flexibility to choose among the tools, to skip

verifications and to enter the process at any point of the life-

cycle. Where to enter the workflow depends on the available

data.

� Although the computational power of mobile devices is

steadily increasing, it may not be sufficient to perform some

of the verification steps on the device itself. To cope with

this situation, the S�C paradigm allows for an outsourcing

of some verifications to (trusted) third parties. Involving

third parties, however, requires that the communication

between the involved parties is being protected. Thus, the

S�C concept has to be embedded into an architecture that

provides access to the S�C services for performing

mentioned verification and which is supported by a security

service.

1.2. Outline of the paper

We start discussing related work (Section 2) to motivate the

need for a generic security framework for pervasive services.

Then we describe the Security-by-Contract S�C paradigm in

detail (Section 3) and discuss the phases of the software life-

cycle and applicable verification techniques. Further, we

discuss our layered security architecture and security services

(Section 4) supporting the S�C paradigm, and discuss the

vulnerabilities and mitigation strategies of the employed

security services (Section 5). We highlight our implementation

of the S�C architecture (Section 6) and sketch some interac-

tion modalities of the S�C paradigm (Section 7) before we

conclude.

2. Related work

Four main approaches to mobile code security can be

broadly identified in the literature: sandboxes limit the

instructions available for use, code signing ensures that code

originates from a trusted source, proof-carrying code (PCC)

carries explicit proof of its safety, and model-carrying code

(MCC) carries security-relevant behavior of the producer’s

mobile code.

2.1. Sandbox security model

This is the original security model provided by Java. The

essence of the approach (Gong, 1997) is that a computer

entrusts local code with full access to vital system resources

(such as the file system). It does not, however, trust down-

loaded remote code (such as applets), which can access only

the limited resources provided inside the sandbox. The

limitation of this approach is easily recognizable: it can

provide security only at the cost of unduly restricting the

functionality of mobile code (e.g., the code is not permitted

to access any files). The sandbox model has been subse-

quently extended in Java 2 (Gong and Ellison, 2003), where

permissions available for programs from a code source are

specified through a security policy. Policies are decided solely

by the code consumer without any involvement of the

producer. The implementation of security checking is done

by means of a runtime stack inspection technique (Wallach

and Felten, 1998).

In .NET each assembly is associated with some default set

of permissions according to the level of trust. However, the

application can request additional permissions. These

requests are stored in the application’s manifest and are used

c o m p u t e r s & s e c u r i t y 2 8 (2 0 0 9) 5 6 6 – 5 7 7 567

Download	English	Version:

https://daneshyari.com/en/article/454569

Download	Persian	Version:

https://daneshyari.com/article/454569

Daneshyari.com

https://daneshyari.com/en/article/454569
https://daneshyari.com/article/454569
https://daneshyari.com/

