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A B S T R A C T

We develop empirically-grounded error envelopes for localization of a point contamination release event in
the saturated zone of a previously uncharacterized heterogeneous aquifer into which a number of plume-
intercepting wells have been drilled. We assume that flow direction in the aquifer is known exactly and
velocity is known to within a factor of two of our best guess from well observations prior to source iden-
tification. Other aquifer and source parameters must be estimated by interpretation of well breakthrough
data via the advection-dispersion equation. We employ high performance computing to generate numerous
random realizations of aquifer parameters and well locations, simulate well breakthrough data, and then
employ unsupervised machine optimization techniques to estimate the most likely spatial (or space-time)
location of the source. Tabulating the accuracy of these estimates from the multiple realizations, we relate
the size of 90% and 95% confidence envelopes to the data quantity (number of wells) and model quality
(fidelity of ADE interpretation model to actual concentrations in a heterogeneous aquifer with channel-
ized flow). We find that for purely spatial localization of the contaminant source, increased data quantities
can make up for reduced model quality. For space-time localization, we find similar qualitative behavior,
but significantly degraded spatial localization reliability and less improvement from extra data collection.
Since the space-time source localization problem is much more challenging, we also tried a multiple-initial-
guess optimization strategy. This greatly enhanced performance, but gains from additional data collection
remained limited.

Published by Elsevier B.V.

1. Introduction

Inverse problems of contaminant source identification are an
essential part of environmental engineering practice, relevant to
both design of remediation schemes and assignment of respon-
sibility. A goal of the inverse analysis might be, for example, to
determine the location of a source, its time of release, or both, based
on measurements downgradient of the source. This problem is con-
founded by two factors: the subsurface is a highly heterogeneous
environment, and it is also an information-poor one, in which the
heterogeneity is inevitably only partially characterized. Thus, even if
it were possible computationally to model the subsurface at a high
resolution, data would not constrain the model. As a consequence, in
practice one is always attempting to estimate quantities of interest
(along with a number of nuisance parameters), using a model that is
simplified relative to reality. A schematic of this situation is shown in
Fig. 1. In this regard, inverse analysis in contaminant hydrogeology is
converse to the situation in a number of other disciplines in which a
process model is assumed to be reliable, but data to be limited, poor
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and “noise-corrupted”. Here, measurements are comparatively accu-
rate, but the assumed process model is at best a gross simplification.
The practitioner’s hope is that, by collecting more data, a more accu-
rate prediction can be made, even though all data will be interpreted
through a systematically incorrect model. Given that subsurface con-
tamination puts human health at risk and costs for those found liable
for remediation may be large, it appears important to not only make
optimal predictions, but to understand of how severe the errors in
these predictions may be, given a certain amount of data. Looked at
another way: we may want to understand the marginal value of fur-
ther data collection expense; how much will this reduce uncertainty,
and will this be worth the cost?

In light of the importance of inverse analysis to contaminant
hydrogeology, many authors have attempted to address aspects of
the problem, using a variety of methods. These techniques notably
include classic regularization methods (e.g. Skaggs and Kabala,
1994), statistical methods (e.g. Snodgrass and Kitanidis, 1997), and
nonlinear simulation-optimization methods (e.g. Mahar and Datta,
2000). While a full review of methods employed for this problem
is out of scope, the reader is referred to the survey paper by Bagt-
zoglou and Atmadja (2005), and to Table 1 of Michalak and Kitanidis
(2004) for summary of what had been accomplished as of the
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Fig. 1. Schematic diagram comparing the true contaminant plume developing in a
heterogeneous environment (left) with a potential best-fit plume (right) generated by
assuming subsurface transport is described by an advection-dispersion equation with
spatially homogeneous parameters.

middle of the last decade. In subsequent literature, broadly the same
types of inverse techniques have been used, although a notable
recent conceptual development is the introduction of Markov Chain
Monte Carlo (MCMC) methods to the source identification problem
by Hazart et al. (2014) and Zhang et al. (2015). As indicated by
Michalak and Kitanidis, much of the early literature was focused on
identification of contamination histories at known-location point-
sources given transport in previously-characterized homogeneous
flow fields. In recent literature, simulation-optimization methods

have gained prominence, as more complicated scenarios featuring,
e.g., multiple dimensions, potentially unknown source locations, and
flow-field uncertainty, have come to be considered (Alapati and
Kabala, 2000; Aral et al., 2001; Ayvaz, 2010; Bashi-Azghadi et al.,
2010; Datta et al., 2009; Guan et al., 2006; Jha and Datta, 2013; Mahar
and Datta, 2001; Yeh et al., 2007).

Error estimation has also been considered in the literature. To
some extent, analytical adjoint techniques (Cheng and Jia, 2010;
Huang et al., 2008; Milnes and Perrochet, 2007; Neupauer and Lin,
2006; Neupauer and Wilson, 1999, 2005), and their particle tracking
analogs (e.g. Bagtzoglou et al., 1992) directly solve for uncertainty
estimates, but only to the extent that all uncertainty is captured by
a Fickian dispersion overlain on a known velocity field. Statistically-
oriented methods (Michalak and Kitanidis, 2004; Snodgrass and
Kitanidis, 1997; Wagner, 1992; Wagner and Gorelick, 1986; Wood-
bury et al., 1998) incorporate a covariance matrix for the parameters,
and from its diagonal entries produce confidence intervals, assuming
independent Gaussian errors. However, this is assumed known a pri-
ori, and methods are not given for grounding this covariance matrix
in physics. Similarly, Bayesian techniques (e.g., Hazart et al., 2014;
Koch and Nowak, 2016), generate a posterior probability distribu-
tions on the parameter of interest, which may be considered as error
envelopes on maximum a posteriori point estimates.

Despite the large literature on optimal identification, as well
as uncertainty analysis once an error structure has been posited,
there appears to be comparatively little in the literature regard-
ing the development of error bounds from the interplay of physics,
model and data inaccuracies. In our review, we found only the
following papers addressing by parametric study the connection
between data quality and prediction error: Skaggs and Kabala (1998)
considered the recovery of an upgradient contaminant impulse
from downgradient point breakthrough in a 1D advective-dispersive
transport problem. They considered how signal strength and noise
level combined to affect source history identification accuracy. A
simulation-optimization study by Datta et al. (2009) considered
how fixed-noise-level head and concentration measurement errors

Fig. 2. Plot of the fluctuation (model infidelity) function, f, with parameters L = 3 m, m = 0.1.
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