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The validity of three mathematical models describing variable-density groundwater flow is
systematically evaluated: (i) a model which invokes the Oberbeck–Boussinesq approximation
(OB approximation), (ii) a model of intermediate complexity (NOB1) and (iii) a model which
solves the full set of equations (NOB2). The NOB1 and NOB2 descriptions have been added to the
HydroGeoSphere (HGS) model, which originally contained an implementation of the OB
description.We define the Boussinesq parameter ερ = βω Δωwhere βω is the solutal expansivity
andΔω is the characteristic difference in solutemass fraction. The Boussinesq parameter ερ is used
to systematically investigate three flow scenarios covering a range of free and mixed convection
problems: 1) the low Rayleigh number Elder problem (Van Reeuwijk et al., 2009), 2) a convective
fingering problem (Xie et al., 2011) and 3) a mixed convective problem (Schincariol et al., 1994).
Results indicate that small density differences (ερ ≤ 0.05) produce no apparent changes in the
total solute mass in the system, plume penetration depth, center of mass and mass flux
independent of the mathematical model used. Deviations between OB, NOB1 and NOB2 occur
for large density differences (ερ N 0.12), where lower description levels will underestimate
the vertical plume position and overestimate mass flux. Based on the cases considered here, we
suggest the following guidelines for saline convection: the OB approximation is valid for cases
with ερ b 0.05, and the full NOB set of equations needs to be used for cases with ερ N 0.10.
Whether NOB effects are important in the intermediate region differ from case to case.
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1. Introduction

Groundwater systems are potentially endangered by salt
water intrusion in coastal aquifers, operation of saline water
disposal basins and upconing of saline water from deep
aquifers (Simmons et al., 2010). As a consequence, potentially
unstable situationsmay exist where a dense fluid overlies a less
dense fluid. This situation can produce instabilities that
manifest as dense plume fingers that move vertically down-
wards counterbalanced by vertical upward flow of freshwater
elsewhere (Simmons et al., 2002). Resulting free convection
increases solute transport rates over large distances and times

relative to constant-density flow. The importance of variable-
density flow in groundwater hydrology has been reported by
various authors (e.g. Oswald and Kinzelbach, 2004; Schincariol
and Schwartz, 1990; Simmons et al., 2002). Diersch and Kolditz
(2002) reviewed fundamental concepts, state equations,
physical processes involved as well as problems used and
relevant studies conducted in the field of variable-density flow
and transport. Most recently, an extensive evaluation of
advances in the field of variable-density flow was given by
Simmons et al. (2010), in which physics, modeling approaches
as well as future challenges are discussed.

Numerical models are useful tools to investigate variable-
density flow and transport. Numerical modeling of variable-
density flow and transport is described by the fluid and solute
mass conservation equations that are coupled through Darcy's
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equation. A common mathematical assumption to solve
the equations is to neglect the spatial and temporal density
variations in the fluid and solute mass conservation equations
and to only consider density variations in the buoyancy term
of the Darcy equation (Frind, 1982; Holzbecher, 1998). This
assumption is referred to as the Oberbeck–Boussinesq approx-
imation (OB-approximation) (Boussinesq, 1903; Oberbeck,
1879). The validity of the OB-approximation has been ques-
tioned by several authors e.g. (Diersch and Kolditz, 2002;
Holzbecher, 1998; Kolditz et al., 1998), who stated that the OB-
approximation is not validwhen high spatial density variations
exist. Non-Boussinesq (NOB) effects can be studied when
density variations are accounted for in one (or both) mass
conservation equations. Accordingly, Kolditz et al. (1998)
defined three physical description levels to represent density
variations in the governing equations in order to evaluate the
OB (low accuracy) and the NOB effects. Table 1 explains the
definition of the OB and of the two NOB levels (NOB1 and
NOB2), and gives the corresponding accuracy level for each
physical description level. Here “✓” means that spatial and
temporal density variations are accounted for in the regarded
mass conservation equation and “∅” means that they are not.

Simulations of variable-density flow problems reported in
the literature tend to use the various levels of description (OB,
NOB1, NOB2) indiscriminately, a sample of which are present-
ed in Table 2. Table 2 shows previously simulated variable-
density flow and transport problems at different fluid density
contrasts using different physical accuracy levels. Table 2 also
shows the maximum fluid density ρmax and the Boussinesq
parameter ερ = βω Δω used for each problem, where the βω is
the solutal expansivity (see Section 2 and Eq. (6) for details)
andΔω is the characteristic difference in solutemass fraction. A
large variety of cases have been simulated using a wide variety
ofmodels. However, a justification for the choice of the physical
description level is often not given. OB is easier to include in
a computational code but it may not adequately represent
large density contrasts. Conversely, NOB1 and NOB2 are more
challenging to program but they may not be necessary at low
density contrasts. It is still not clearwhether one should use OB,
NOB1 or NOB2. Therefore a systematic evaluation that studies
under what conditions the OB is no longer valid and when
higher mathematical accuracy levels (NOB1 or NOB2) have to
be applied is necessary.

The main objective of this study is to systematically analyze
the validity of the OB and the non-Boussinesq effects (NOB1
and NOB2) used to describe spatial and temporal density
variations in variable-density simulations of flow and trans-
port. In order to do so, the HGS numerical model, originally
capable of simulating OB conditions, was further developed
here to include highermathematical accuracy levels (NOB1 and
NOB2) in the simulation of variable-density flow and transport.
A recently obtained pseudospectral solution of a frequently
used variable-density flow benchmark problem (Van Reeuwijk

et al., 2009) will be used for model verification and testing. A
range of density contrasts will be tested in order to determine
at which density contrast the non-Boussinesq effects may have
to be considered. Resulting differences between the models
will be quantified. We will use the problem presented by Van
Reeuwijk et al. (2009) defined as the low Rayleigh number
Elder problem, the free convection problem presented by Xie
et al. (2011) defined as the modified Xie problem and the
mixed convection problem presented by Schincariol et al.
(1994) defined as the modified Schincariol problem.

This paper is structured as follows. Section 2 describes the
governing equations. A description of theHGS numericalmodel
as well as the finite element formulation of the governing
equations at NOB2 level implemented inHGS is given. Section 3
explains the nondimensionalization of the governing equations
in order to quantify the impact of the non-Boussinesq effects
using the ερ. Section 4 focuses on a description of the flow
scenarios used for verification of the implementations made to
the HGS code and the flow scenarios used for the assessment of
the OB, NOB1 and NOB2 models. The OB, NOB1 and NOB2 are
diagnosed using the total solute mass in the system, center of
mass, penetration depth and mass fluxes at different density
contrasts. A mass error (Δm) and an L 2 norm are defined to
asses the differences between the OB, NOB1 and NOB2
diagnostics. A discussion of the results obtained is presented.
Finally, in Section 5, conclusions and a summary are given.

2. Mathematical formulation and discretization

2.1. Governing equations

Variable-density flow in aquifers under saturated flow
conditions is described by the Darcy equation (Frind, 1982;
Kolditz et al., 1998):

q ¼ � μ0

μ
K0 � ∇hf þ

ρ� ρ0

ρ0
ez

� �
ð1Þ

where q [L T−1] is the specific discharge vector, K0=ρ0gk/μ0

[L T−1] is the equivalent freshwater conductivity, ρ0 [M L−3] is
the reference fluid density, g [L T−2] is the gravitational
acceleration, k [L2] is the permeability tensor, μ [M L−1 T−1] is
the dynamic viscosity, μ0 [M L−1 T−1] is the reference dynamic
viscosity, ρ [M L−3] is the fluid density, ez [−] is a unit vector in
the vertical direction and hf [L] is the equivalent freshwater
head (Frind, 1982):

hf ¼
p

ρ0g
þ z ð2Þ

where p [M L−1 T−2] is the pressure and z [L] is the elevation
above datum. The mass conservation equations for the fluid
and solute mass fraction ω [−] are given by (Bear, 1988):

∂ϕρ
∂t

þ ∇ � ρqð Þ ¼ 0 ð3Þ

∂ϕρω
∂t

þ ∇ � ρωqð Þ ¼ ∇ � ϕρD � ∇ωð Þ: ð4Þ

Table 1
Oberbeck and non Oberbeck–Boussinesq effects.

Fluid mass conservation Solute mass conservation Accuracy

OB ∅ ∅ Low
NOB1 ✓ ∅ Medium
NOB2 ✓ ✓ High
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