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The objective of the paper is to present an empirical Bayesian method combined with Akaike's
Bayesian Information Criterion (ABIC) to estimate the contaminant release history of a source in
groundwater starting from few concentration measurements in space and/or in time. From the
Bayesian point of view, theABIC considers prior information on the unknown function, such as the
prior distribution (assumed Gaussian) and the covariance function. The unknown statistical
quantities, such as the noise variance and the covariance function parameters, are computed
through the process; moreover the method quantifies also the estimation error through the
confidence intervals. The methodology was successfully tested on three test cases: the classic
Skaggs and Kabala release function, three sharp releases (both cases regard the transport in a one-
dimensional homogenousmedium) and data collected from laboratory equipment that consists of
a two-dimensional homogeneous unconfined aquifer. The performances of the method were
tested with two different covariance functions (Gaussian and exponential) and also with large
measurement error. The obtained results were discussed and compared to the geostatistical
approach of Kitanidis (1995).
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1. Introduction

Contaminant release history identification has received
considerable attention in the literature over the past several
decades. Although a number of reasonable approaches have
been developed during this time no panacea has yet
emerged. This is in part due to its ill-posed nature, and
frequently, either the data stream is of insufficient length,
contains missing data points, or is inaccurate. The reader is
referred to Atmadja and Bagtzoglou (2001); Michalak and
Kitanidis (2004); Sun et al. (2006) or Cupola et al. (2015)

for extensive reviews of this specific problem in groundwa-
ter hydrology.

Interest in this area continues because it is a good
representative of an inverse problem in hydrology. Since
mathematical inversion is a cornerstone-problem in geophys-
ics, the impact of any successful works will be high. Inverse
theory, in its truest sense, is different from standard parameter
estimation problems in statistics in that the unknowns sought
are functions and not a small set of numbers (Parker, 1977;
Tarantola, 1987; Ulrych and Sacchi, 2005). This means that in
principle, there is an infinite number of variables sought. A
variety of approaches exist and there are two main avenues to
take. One of these deals with the ideal case of an infinite
amount of exact data and the unknowns sought are continuous
functions. For example, a Fourier transform and its inverse.
This is the realm of the applied mathematician and these
approaches tend to be analytic or quasi-analytic in nature.
Analytic techniques are sensitive to the way data are collected
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and to noise present. Nevertheless these approaches are useful
for their results concerning uniqueness, stability and so on (see
also Tarantola, 2005, Ch 5, functional space inversion). The
other main avenue relates to the practical problems encoun-
tered in the geophysical sciences where the model is
“parameterized” into a finite set of parameters and involves
the collection of incomplete and noisy data. One could on
purpose propose a small number of structures such that more
data than unknowns are present. It is in this area where the
vast majority of efforts in groundwater are concentrated and a
variety of approaches are possible. The more computationally
demanding, and perhaps interesting problems are those in
which the parameterization is done so that a high degree of
resolution is possible, if one is willing to tolerate the ambiguity
of the result (e.g. Woodbury and Ulrych, 2000; Painter et al.,
2007). Stability in the presence of noise is always an issue, as is
uniqueness which is difficult to prove. The technique that
permits unique and stable inverse solutions by introducing
prior information is called regularization. The widely used
Levenberg–Marquardt method imposes “smoothness” to the
model. This is essentially the basis for the well known PEST
wrap-around code. In fact, Tikhonov showed that once an ill-
posed problem becomes properly regularized it becomes
stable. For these reasons, parameterized inverse problems are
stabilized by weighting with error terms and are regularized to
achieve some measure of uniqueness under one norm, or a
variety of norms. The validity of the regularization terms
becomes apparent, and perhaps justified when the inverse
problem is approached from Bayesian or maximum entropy
perspectives (Ulrych and Sacchi, 2005).

Specifically, in our review of the literature on this subject
(see the above references) suggests that improvements are
needed in terms of a reliable procedure, one that is easy to
implement, with only few hyperparameters to estimate, and is
able to evaluate confidence intervals. For these reason the
purpose of this work is to propose an empirical Bayesian
approach combined to the Akaike's Bayesian Information
Criterion (ABIC) to estimate the contaminant release history,
and to demonstrate its effectiveness.

This work estimates the temporal contaminant release
history of a point source with the following simplifying
assumptions: the solute is conservative, it is a 1-D or 2-D
problem, the source location is known, the flow is uniform
and steady, and the transport parameters are known at
each point of the domain. These assumptions are necessary for
the development and testing of the current methodology.
Further, the release concentration is uncertain and its proba-
bility density function is assumed multivariate Gaussian.
Specifically, we adopt a probabilistic approach to the inversion,
assume a Gaussian likelihood and Gaussian prior to the
problem, and seek the solution that minimizes Akaike's
Bayesian Information Criterion, the ABIC. We propose an
important extension to the algorithm that constrains
solutions to only positive models and we test the method
out on three test cases: the classic Skaggs and Kabala
(1994) source, a “midnight dump” example that consists of
three delta-like sources and lastly a laboratory experimen-
tal dataset, consisting of two measurement points spatially
but with synoptic observations, obtained from a laboratory
equipment, that reproduces the response of a 2-D uncon-
fined aquifer.

2. Theory

2.1. Contaminant transport in groundwater

The following Eq. (1) describes the transport process in an
aquifer reacting to the injection of a non-sorbing, non-reactive
solute at a point source (Bear and Verruijt, 1987):

∂ φC x; tð Þð Þ
∂t

¼ ∇ � φD xð Þ∇C x; tð Þ½ �−∇ � φu x; tð ÞC x; tð Þ½ �
þm x0; tð Þδ x−x0ð Þ ð1Þ

where: φ [−] is the effective porosity, u(x,t) [LT−1] is the
effective velocity at location x and time t [T], D(x) [L2T−1] is
the dispersion tensor, C(x,t) [ML−3] is the concentration,
m(x0,t) = cin(t) · qin(x0,t) [MT−1] is the amount of pollutant
per unit time injected into the aquifer through the source
located at x0, cin(t) [ML−3] is the concentration of the released
contaminant at time t and qin(x0,t) [L3T−1] is the injection flow
rate.

Eq. (1), considering uniform porosity, can be rewritten as:

φ
∂C x; tð Þ

∂t
¼ ∇ � φD xð Þ∇C x; tð Þ½ �−∇ � φu x; tð ÞC x; tð Þ½ �

þm x0; tð Þδ x−x0ð Þ: ð2Þ

The solution of Eq. (2) when associated with the initial and
boundary conditions: C(x,0) = 0; C(∞,t) = 0, is given by the
convolution integral:

C x; tð Þ ¼
Zt
0

m x0; τð Þg x; t−τð Þdτ ð3Þ

where g(x,t-τ) [L−3] is the Kernel function that describes the
effects at x at time t [T] by an impulse injection occurring at x0
at time τ.

Under simple flow conditions (such as homogeneous,
isotropic, absence of withdrawal or recharge) the Kernel
functions can be determined analytically, for instance for 1-D
flow

g x; t−τð Þ ¼ x

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
πD t−τð Þ3

q exp −
x−v t−τð Þð Þ2
4D t−τð Þ

" #
: ð4Þ

In non-uniform flow field it is necessary to employ numerical
approaches, such as the Stepwise Input Function procedure
methodology developed by Butera et al. (2006, 2013), that is a
numerical strategy for Kernel functions calculation. The time
derivative of Eq. (3), considering a constant and known input
function m(x0,t)=F0 ⋅H(t), where H(t) [−] is the Heaviside
step function and F0 = c0 · qin(x0,t) [MT−1] is the amount of
pollutant per unit time injected into the aquifer with constant
and known concentration c0, results in:

g x; tð Þ ¼ 1
F0

∂C x; tð Þ
∂t

¼ 1
c0qin x0; tð Þ

∂C x; tð Þ
∂t

tN0: ð5Þ

Eq. (5) shows that it is possible to compute the Kernel
functions at a generic point x by processing the concentration
history (breakthrough curve) at the same location due to a
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