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The uncertainty of mass discharge measurements associated with point-scale measurement
techniques was investigated by deriving analytical solutions for the mass discharge coefficient of
variation for two simplified, conceptual models. In the first case, a depth-averaged domain was
assumed, consisting of one-dimensional groundwater flow perpendicular to a one-dimensional
control plane of uniformly spaced sampling points. The contaminant flux along the control plane
was assumed to be normally distributed. The second case consisted of one-dimensional
groundwater flow perpendicular to a two-dimensional control plane of uniformly spaced
sampling points. The contaminant flux in this case was assumed to be distributed according to a
bivariate normal distribution. The center point for the flux distributions in both caseswas allowed
to vary in the domain of the control plane as a uniform random variable. Simplified equations for
the uncertainty were investigated to facilitate screening-level evaluations of uncertainty as a
function of sampling network design. Resultswere used to express uncertainty as a function of the
length of the control plane and number of wells, or alternatively as a function of the sample
spacing. Uncertainty was also expressed as a function of a new dimensionless parameter, Ω,
defined as the ratio of the maximum local flux to the product of mass discharge and sample
density. Expressing uncertainty as a function of Ω provided a convenient means to demonstrate
the relationship between uncertainty, the magnitude of a local hot spot, magnitude of mass
discharge, distribution of the contaminant across the control plane, and the sampling density.
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1. Introduction

Contaminant mass flux J [ML−2 T−1] and mass dischargeṁ
[MT−1] combine two important features of contaminant risk:
concentration C [ML−3] and mobility (e.g., Suthersan et al.,
2010). These measurements have been used for a number of
site management purposes, including assessments of degrada-
tion rates (e.g., Borden et al., 1997; Kao and Prosser, 2001; Kao
and Wang, 2000, 2001; King et al., 1999; Semprini et al., 1995;
Suarez and Rifai, 2002), characterization of source zones and

associated plumes (e.g., Basu et al., 2006, 2009; Einarson and
Mackay, 2001; Fraser et al., 2008; Guilbeault et al., 2005; King
et al., 1999; Newell et al., 2011), characterization of back
diffusion from aquitards (Chapman and Parker, 2005), and
assessments of benefits from partialmass removal fromDNAPL
source zones (Brooks et al., 2008; Cai et al., 2012; DiFilippo and
Brusseau, 2008).

Specific methods used to measure J and ṁ have been
summarized in several publications (e.g., Chen et al., 2014;
ITRC, 2010; Kavanaugh et al., 2011; Kübert and Finkel,
2006), and can be divided into two broad categories: point-
measurement methods and pumping-measurement methods.
Point-measurement methods are based on sampling tech-
niques with relatively small sampling volumes, andmost often
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consist either of applications based on multi-level samplers
(e.g., Freitas et al., 2011; Guilbeault et al., 2005; Kao andWang,
2001) or passive flux meters (PFMs) (e.g., Annable et al., 2005;
Hatfield et al., 2004). With respect to the former, variations
between approaches stem from methods used to estimate
the Darcy flux q [LT−1], and equally important, the spatial
scale over which those measurements are made. A common
criticism of point-measurement methods is the uncertainty
that results when they are used to estimate ṁ due to the un-
sampled regions between measurement locations. In contrast,
pumping-measurement methods integrate information over
a much larger sampling volume, and thereby minimize the
potential for uncertainty due to un-sampled regions between
point-measurement locations. Pumping-measurement methods
can be sub-divided into two groups: steady-state (Bayer-Raich
et al., 2004; Brusseau et al., 2007; Einarson and Mackay, 2001;
Holder et al., 1998) and transientmethods. In the latter category,
the original and most common pumping-measurement method
is the integral pump test (Bayer-Raich et al., 2004, 2006;
Bockelmann et al., 2001; Schwartz et al., 1998), but other
pumping-based approaches have been investigated and used
(Brooks et al., 2008; Goltz et al., 2009; Kavanaugh et al., 2011).

The gain in certainty by minimizing un-sampled space
in the application of a pumping-measurement method
comes at the expense in loss of information about the
spatial J distribution. Thus, a trade-off is made between
spatial information and the level of uncertainty associated
with the measurement of ṁ. The uncertainty associated
with un-sampled space when using a point measurement
can of course be minimized by collecting more point
measurements to reduce the distance between sampling
locations. Increasing the number of samples, however,
increases cost.

A number of studies have been completed on point-
measurement method uncertainty (Béland-Pelletier et al.,
2011; Cai et al., 2011, 2012; Chen et al., 2014; Klammler et al.,
2012; Kübert and Finkel, 2006; Li and Abriola, 2009; Li et al.,
2007; MacKay et al., 2012; Schwede and Cirpka, 2010;
Troldborg et al., 2010, 2012). Two of these studies were based
on field trials (Béland-Pelletier et al., 2011; MacKay et al.,
2012), two of the studies used flow and transport simulations
within Monte Carlo frameworks (Chen et al., 2014; Kübert and
Finkel, 2006); two more studies likewise used flow and
transport simulations within Monte Carlo frameworks, but
simulations were conditioned to field data (Schwede and
Cirpka, 2010; Troldborg et al., 2010); and the remaining
studies employed various conditional, geostatistical tech-
niques, wherein one or more parameters across the control
plane were treated as spatial random variables.

Kubert and Finkel (2006) conducted an extensive Monte
Carlo analysis on a hypothetical site to evaluate uncertainty as a
function of measurement method, sampling density (SD), and
hydraulic conductivity (K) heterogeneity. As an example of the
results obtained, the mean relative error was less than 10% for
all levels of heterogeneity using an approach that directly
measured flux with SD = 5 pts/m2. When SD was reduced to
0.1 pts/m2, the mean relative error increased, and ranged from
~30% to ~60% for 0.25 ≤ σln K

2 ≤ 4.5. Their research also noted
the uncertainty that may result when combining measure-
ments based on different support volumes, as for example
when local scale measurements of K are combined with site-

wide average measurements of the hydraulic gradient I. Under
this approach, the mean relative error ranged from approxi-
mately 40% to 500% for 0.25 ≤ σln K

2 ≤ 4.5, even using the
highest sampling density of 5 pts/m2.

Kübert and Finkel (2006) used a temporally and spatially
constant source of uniform C to generate the contaminant
plume in their simulations. The area of the source was ~20% of
the model domain cross section, and therefore was more than
20% of the control plane area. As a comparison, Guilbeault et al.
(2005) noted that 80% of the plume mass-discharge occurred
within 10% or less of the control plane area at three field
sites they investigated. The impact of smaller contaminant
mass distributions on uncertainty was investigated by Li et al.
(2007), as part of a method they demonstrate to quantify
uncertainty using empirical mass discharge cumulative distri-
bution functions (CDFs) based on joint geostatistical simula-
tions of random C and K fields conditioned to field
measurements. They noted that in the case of ṁ = 319 g/d,
a SD of 0.1 pt/m2 yielded a mean relative error of ~20%, but
the same SD yielded a mean relative error of ~180% in the
case of ṁ = 15 g/d. To achieve a ~20% mean relative error for
ṁ = 15 g/d, their results indicated a SD of ~3 pt/m2 would be
needed. This work was extended by Li and Abriola (2009) who
presented a staged sampling strategy, where optimal sample
locations were identified by evaluating initial sampling results
frommean C, local random variable entropy, and C conditional
variance criterion. Compared to sampling densities based on a
single sampling event with a regularly spaced grid, a sampling
density of half or less was needed based on their staged
approach.

Other studies that likewise presented methods to estimate
ṁ uncertainty using geostatistical simulations of random
spatial variables conditioned to field measurements include
Cai et al. (2011), Cai et al. (2012), Klammler et al. (2012), and
Troldborg et al. (2012). In each case, uncertaintywas quantified
by generating empirical CDFs of ṁ. Cai et al. (2011) assumed
uniform flow, such that uncertainty stemmed only from the
spatial C distribution. This approach was extended in Cai
et al. (2012) to include K as a second, independent spatial
random variable. In both cases, uncertainty was summarized
using boxplot representations of the CDFs. Data from the
boxplots was used to calculate a normalized 95% confidence
interval (defined as the difference between the 97.5% and
2.5% quantiles, divided by the 50% quantile), which ranged
from 35% to 76% for the case studies investigated. Troldborg
et al. (2012) calculated mass discharge uncertainty through
Bayesian conditional simulations, where C and q were
treated as independent random spatial variables, but q was
generated from a joint conditional simulation of K and I. The
method was applied to a field site with σlnK

2 = 1.4, and using
sampling networks with SD = {0.32, 0.05} pts/m2, they
estimated ṁ = {12, 21} g/d total chlorinated ethenes,
respectively. The coefficient of variation CV associated with
these two estimates were {43%, 74%}, respectively. Klammler
et al. (2012) present a stochastic simulation method condi-
tioned to PFM measurements to estimate the CDF of ṁ across
the control plane. The method was used to estimate uncer-
tainties associated with two PFM deployments: in the first case,
CV=16% for a site withṁ=777 g/d trichloroethylene using a
sampling network with SD = 0.4 pts/m2; and in the second
case, CV = 7% for a site with ṁ = 19 g/d uranium using a
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