
Conversion cost and specification on interfaces of key-value stores

Jie Song a,⁎, Kun Guo a, Jieping Wang b, Haibo Li b, Yubin Bao c, Ge Yu c

a Software College, Northeastern University, Shenyang 110169, China
b China Electronics Standardization Institute, Beijing 100007, China
c School of Computer Science and Engineering, Northeastern University, Shenyang 110169, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 20 August 2015
Received in revised form 14 February 2016
Accepted 14 February 2016
Available online 2 March 2016

Due to the quick growth of data created and analyzed by industry and business requirements become more
complex, many companies come to employ more than one key-value store together to serve different tasks.
Considering key-value stores currently define their own interfaceswhich have different attributes and semantics,
interoperability among these key-value stores is weak. To get the best interoperability, we may choose the store
whose interfaces are similar to the others, orwemay define an interface specification such as SQL specification in
relational databases.Wepropose an interface descriptionmodel (IDM for short) to abstract interfaces of different
key-value stores, and an algorithm to quantify their differences, named as conversion cost.With the help of these
algorithms, we can measure and compare the interoperability of given two stores. After studying the interoper-
ability of many stores, we propose an interface prototype, which has the minimum conversion cost to the
interfaces of other stores, as a reference to the interface specification of key-value store. Experiments show the
features of interfaces, and prove that the proposed prototype has the best interoperability to other typical stores.

© 2016 Elsevier B.V. All rights reserved.

Keywords:
Key-value stores
Interoperability
Conversion costs
Interfaces specification

1. Introduction

With the rapid development of information technologies, the scale
of data created and analyzed by industry grows larger and larger. Tradi-
tional relational databases, which organize data into relational models,
meet a performance bottleneck when querying and managing big data
in such situations [1]. To break the limitation of relational databases,
NoSQL database such as key-value store emerged in recent years. Data
relationship in key-value store is simplified and transactional property
for ACID is generally given up [2]. Varieties of key-value stores are
designed in different architectures to meet different requirements, but
all of them follow key-value data model which will be explained
in Section 3. Due to their great performance and flexibility, key-
value stores are widely used in industry in support of the big data
management [3].

Different databases, especially databases in different categories, are
in different architectures. If multiple databases are employed within a
system, each database has its own advantages when handling some
specified types of data, and is efficient in specified scenarios. Using
and maintaining more than one database within a system help to
reduce the heavy burdens caused by various use cases. Each use case
corresponds to the most appropriate database, therefore the efficiency
and scalability of system are guaranteed. And for techniques such as
data warehouse and data integration, due to the variety of big data,

heterogeneous databases are often employed for storing data. Besides,
the system,which can employmultiple databases, has better portability.
It avoids vendor lock-in by changing existing database easily, compared
with the system that only locked on one database. The last but not least,
applications should access multiple databases via a uniform interface.
Therefore, the diversity and complexity of the underlying databases
are transparent to the developers.

Because of the previous reasons, the usage of multiple key-value
stores becomes more common and used frequently in industry. For an
operational system, performance is the key issue, and diverse data are
required to meet various requirements. Multiple databases support
the diverse data well with high performance. For analytical systems,
it is frequent to perform data analysis on the massive and various
data. We tend to store data in heterogeneous databases because of
the different equipment or different approaches it takes during data
collection. The middleware of query driven data integration, which
access multiple databases with a uniform interface, is frequently
adopted in data analysis system.

Actually, most Internet companies like Facebook have already
deployed multiple databases into their development environments.
Facebook adopts several key-value stores to meet its various business
requirements: HBase for messages service and monitoring, Haystack
for photo store and Memcached for in-memory data store. Twitter
employs Cassandra for atomic counting and HBase to power its search
engine. E-business sites like Amazon adopts key-value store such as
MongoDB and Riak to record users' click stream, and Redis to achieve
effective static pages serving or caching of product related data. The
Chinese online shopping platform, named TaoBao, also adopts the in-

Computer Standards & Interfaces 47 (2016) 42–51

⁎ Corresponding author
E-mail address: songjie@mail.neu.edu.cn (J. Song).

http://dx.doi.org/10.1016/j.csi.2016.02.007
0920-5489/© 2016 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2016.02.007&domain=pdf
http://dx.doi.org/10.1016/j.csi.2016.02.007
mailto:songjie@mail.neu.edu.cn
Journal logo
http://dx.doi.org/10.1016/j.csi.2016.02.007
Unlabelled image
http://www.sciencedirect.com/science/journal/09205489
www.elsevier.com/locate/csi


memory database, transaction supported key-value database, massive
contents oriented key-value store and achieved oriented storage to sup-
port its business. Interoperability, representing the ability to share data
and work together among key-value stores, is necessary [4]. From an-
other perspective, considering the compatibility, portability, extensibil-
ity and reusability of system, it is underlying databases that dominate
these properties. It is beneficial if a system could change their underly-
ing databases easily, or support heterogeneous databases. For instance,
the uniform interface of data access layer and the lower cost of mapping
database interface which will contribute to the portability.

Existing key-value stores, such as HBase, SimpleDB, CouchDB, Riak
and MongoDB, have similar data model but distinctive architectures.
They provide the similar interfaces, but the same concept may corre-
spond to different terms and structures. Most key-value stores now
provide interfaces to access data directly through HTTP protocol that is
RESTful API (Application Program Interface) [5]. However, when
invoking interfaces through HTTP protocol, users must create a HTTP
request and then parse the data appended in the HTTP response, and
the corresponding key-value store defines the particular data format of
HTTP messages. Due to the difference of interfaces in format, it is
inevitable to develop specialized programs, which are costly and less of
scalability, for data exchange and data integration needs among key-
value stores. Interoperations among database based applications and
programming on data access frameworks are hard to achieve as well.

Considering interfaces of key-value stores are more or less distinc-
tive, users have to understand many interface formats. Data access
turns to be inefficient and tedious. If there is a specification on interfaces
of key-value store, as sameas SQLof relational databases, theproblemof
interoperability and vendor lock-in could be solved. When replacing
existing key-value stores, such kind of specification helps to choose
the appropriate one among alternative stores,whichhas less conversion
cost to achieve interoperations with key-value stores remained in
the system. And it can also provide guidance for the design of related
database interfaces and standards through finding relatively less costly
interface format. Unfortunately, there is no such specification so far
and few researches study the conversion costs of interfaces of key-
value stores. In this paper, based on the “Information technology,
cloud data storage and management, part 5, specification on interfaces
of Key-value store” [6], which is the project issued by “Information
Technology Standardization Administration of China”, we define
and evaluate the conversion cost on interfaces of key-value stores, and
provide a reference to the specification on them.

In this paper, database refers to key-value store since which is not a
proper database; interface refers to an operational one in database, such
as insert interface and delete interface; (interface) distance is a cost of
adapting one interface into another. Database interfaces refer to all
operational interfaces of database; database distance is an aggregated
cost of adapting interfaces of one database into those of another
database correspondingly. Based on the previous description, there are
several pending questionswhichmay help to the interface specification
of key-value stores. (1) Given interfaces of two databases, what is the
conversion cost between them, how to quantify the cost. (2) Whether
there is an existing key-value store which has theminimum conversion
cost to other databases; (3) Theoretically, whether an interface, whose
conversion cost to the other interfaces is minimum, could be defined.
(4) How to design and estimate the interface specification. As much
as our knowledge, several research works, which are explained in
Section 2, are focus on the similar topics.

In this paper we present an interface description model to describe
interfaces of key-value stores, and the model highlights the crucial
structure that makes the interface distinctive among others. Each inter-
face is abstracted into a tree structure through this model and we
propose a quantification algorithm to evaluate the difference, named
as “distance”, between interfaces. Essentially, given two interfaces of
the same operation in two key-value stores, the distance is the cost it
takes when adapting one interface into another. Referring the edit

graph algorithm, the distance can be calculated, and then, the interfaces
which have the minimum distances to the others indicate a theoretic
specification. Experimental results prove that the proposed specification
has less distance than other interfaces from existing key-value stores.
Our contributions in this paper are listed as follows. (1) Propose an inter-
face descriptionmodel to abstract interface characteristics. (2) Propose a
general way to quantify and evaluate the difference between two REST-
ful interfaces defined by key-value stores and represent the difference as
distance. (3) Based on the conversion costs of interfaces of existing key-
value stores, we have discussed the use of the proposed approach and
propose an interface specification (a referenced one).

The rest of this paper is organized as follows. Following the introduc-
tion, Section 2 introduces the related work. Section 3 introduces the
definitions of interface description model and Section 4 explains the
algorithms of distance quantification. Section 5 discusses several poten-
tial scenarios of the conversion cost and Section 6 introduces several
proposed database interfaces as a prototype of national specification
on interfaces of key-value store. And in Section 7, we evaluate the
distance of HBase, SimpleDB, CouchDB, Riak, MongoDB and our Proto-
type. The experiment result shows that Prototype has these minimum
conversation costs than others comprehensively. Finally, conclusions
and future works are summarized in Section 8.

2. Related work

To guarantee the interoperability of traditional relational databases,
some researchers suggest integrating multiple autonomous database
systems as a federated database [7,8,9]. The federation database mainly
maintains mappings to data structures or schemas of any two different
databases. Although the solution has solved data integration problem
among different databases, however, it tends to build a management
system over existing databases. It is hard to maintain the system and
fails to fix the problem from the perspective of high scalability and
interoperability. In fact, interoperability could be simply improved if
all databases follow an interface specification, such as SQL language in
relational databases. SQL-like query is also an effective implementation
to access data stored in different key-value stores. In the data integra-
tion, SQL queries express data conditions to filter data in various key-
value stores and relational databases. Those conditions also help to
organize data into a predefined schema that is easier to access and
analyze [10,11,12,13].

Atzeni et al. proposed a common programming interface [14], which
plays a meta-layer role when users access to key-value stores, to reduce
the heterogeneity of interfaces during the development. This common
interface is designed in an object-oriented manner and provides three
simplified operations, put, get, and delete, for users to interact with
key-value stores. By calling corresponding methods and passing speci-
fied parameters, the details and constraints of underlying key-value
stores are transparent to users and developers.

Marinos et al. presented a series of patterns that make relational
databases accessible through Web services possible [15]. Haselmann
et al. proposed a group of universal APIs to support unified APIs used
for diversity of Data-as-a-Service systems [16]. The paper introduced a
feasible way to design universal APIs and discussed the features of
universal APIs'. These APIs, such as querying data and defining schema,
are RESTful, resource-oriented, and intuitional URIs. However, they lack
the comprehensive definitions of HTTP request and response, so that
these universal APIs are not completed and impractical. These APIs
inspire our work because they are not only compatible with traditional
relational databases and XML databases, but also NoSQL databases.
However, the weakness is that the generalization makes these APIs
redundant and hard to describe even represented in REST style. No
evaluation standard or experiment is proposed in the paper, it is hard
to estimate the effectiveness and efficiency.

The similar interface definitions are WADL [17]. It formalizes the
description of HTTP-based applications, which provide programmatic

43J. Song et al. / Computer Standards & Interfaces 47 (2016) 42–51



Download English Version:

https://daneshyari.com/en/article/454657

Download Persian Version:

https://daneshyari.com/article/454657

Daneshyari.com

https://daneshyari.com/en/article/454657
https://daneshyari.com/article/454657
https://daneshyari.com

