Computer Standards & Interfaces 38 (2015) 17-24

journal homepage: www.elsevier.com/locate/csi

Contents lists available at ScienceDirect

Computer Standards & Interfaces

(AL

s

TR

An enhancement of return address stack for security

@ CrossMark

Chien-Ming Chen ?, Shaui-Min Chen ®, Wei-Chih Ting €, Chi-Yi Kao ®, Hung-Min Sun >*

2 School of Computer Science and Technology, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, China

b Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan, ROC
¢ Industrial Technology Research Institute, Hsinchu, Taiwan, ROC

ARTICLE INFO ABSTRACT
Am‘clg history: Stack smashing is one of the most popular techniques for hijacking program controls. Various techniques have
Received 20 August 2012 been proposed, but most techniques need to alter compilers or require hardware support, and only few of

Accepted 16 August 2014
Available online 27 August 2014

Keywords:

Stack smashing attack

Buffer overflow

Memory pointer corruption attack
Return address stack

Binary rewriting

and 8.59%.

them are developed for Windows. In this paper, we design a Secure Return Address Stack to defeat stack smashing
attacks on Windows. Our approach does not need source code and hardware support. We also extend our ap-
proach to instrument a DLL, a multi-thread application, and DLLs used by multi-thread applications.
Benchmark GnuWin32 shows that the relative performance overhead of our approach is only between 3.47%

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

With the rapid growth of computer system, more and more issues
have been concerned. One of the most concerned issues is security.
Stack smashing attacks, which exploit buffer overflow vulnerabilities
[18,12,31,7,30] to hijack the program control from attacked applica-
tions, are the most widely used type of attacks. Due to careless program-
mers, vulnerabilities [28,29] exist all the time. Diverse techniques have
been proposed to thwart stack smashing attacks, such as static analysis
and dynamic detection. However, they are not as useful as we thought
because most of them must alter compilers [34,33,10,8,11,22,32,1,20]
and recompile source code, or require hardware support [35,34,13,9]
to execute specialized instructions. Another reason is that most of
them are built only for Linux. However, Windows is still the most pop-
ular operating system today, and there are more applications that con-
tain buffer overflow vulnerabilities. Therefore, we need to protect
those applications from stack smashing attacks on Windows.

There is a class of techniques [26,34,23,8,25,2,32] which creates a
safe area to backup return addresses to prevent stack smashing attacks.
The safe area is called private stack, canary stack, or return address
repository, etc. For consistency, we call it return address stack through-
out this paper. These techniques revise the prologue and epilogue of
each protected function. The revised function prologue will store copies
of the return address into return address stack, and the revised function
epilogue will restore the return address on stack with copies of them.
Obviously, these techniques should guarantee that the return address
stack is absolutely secure because attackers may attempt to modify

* Corresponding author at: No. 101, Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan,
ROC. Tel.: +886 3 5715131x42968; fax: + 886 3 5723694.

http://dx.doi.org/10.1016/j.csi.2014.08.008
0920-5489/© 2014 Elsevier B.V. All rights reserved.

the contents of the return address stack to hijack the program control.
In general, these techniques set return address stack as read-only
mode most of the time to protect it. The only situation that the return
address stack becomes writable is in the revised function prologue
when it is pushed into return address stack. In this paper, all we consid-
ered is outside the box by showing that only setting return address stack
as read-only is not secure enough if the return address stack is dynam-
ically allocated.

Our approach is based on Binary Rewriting, so we can protect appli-
cations from stack smashing attacks without source code and hardware
support. Hence, we only focus on those techniques that use Binary
Rewriting. We classify them into two groups according to the way
they allocate return address stack: (1) static allocation [26,23] and
(2) dynamic allocation [25,2]. The first group statically allocates a return
address stack like adding a new section called return address stack into
Portable Executable (PE) or Executable and Linking Format (ELF) file.
Therefore, the return address stack is already created before running
the protected application. The second group dynamically allocates a
return address stack at the beginning of the protected application. In
this way, the return address stack is certainly located in the heap. We
discovered that there is a potential security risk if the return address
stack is dynamically allocated. Because the second group dynamically
allocates an area to be the return address stack, it must have an Entry
Pointer of the return address stack in order to pass the address to the
revised function prologue and epilogue of each protected function.
However, the second group only keeps eyes on protecting the return
address stack but fail to protect Entry Pointer of the return address
stack. For this reason, we can launch a Memory Pointer Corruption Attack
to hijack the program control from protected applications by modifying
Entry Pointer of the return address stack even if they are under

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.08.008&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.08.008
http://dx.doi.org/10.1016/j.csi.2014.08.008
http://www.sciencedirect.com/science/journal/09205489

18 C.-M. Chen et al. /| Computer Standards & Interfaces 38 (2015) 17-24

protection. The detail of Memory Pointer Corruption Attack will be ex-
plained in the next section.

In this paper, we design a Secure Return Address Stack to protect the
return address stack and entry pointer of the return address attack from
stack smashing attacks on Windows. Our approach does not need
source code and hardware support because we combine DLL Injection
with Dynamic Binary Rewriting to implement it. Moreover, we also
extend our approach to instrument a DLL, a multi-thread application,
and DLLs used by multi-thread applications. Benchmark GnuWin32
shows that the relative performance overhead of our approach is only
between 3.47% and 8.59%.

The rest of this paper is organized as follows. In Section 3, we
describe our approach and implementation. We evaluate our approach
in Section 4. Section 5 describes a drawback, a limitation, and two
potential security issues for instrumenting a multi-threading applica-
tion. In Section 6, we survey related works of stack smashing attacks,
and a conclusion will be given in Section 7.

2. Background

In this section, we review the stack smashing attacks and the
memory pointer corruption attacks.

2.1. Stack smashing attacks

To understand stack smashing attacks, Fig. 1 shows a typical exam-
ple. The C programming language is a popular language due to its high
execution efficiency, but it has a lot of unsafe functions. For example,
strcpy() is one of them because it does not check boundary automatical-
ly. Lack of boundary checking during a buffer copy operation may cause
areas adjacent to the buffer be overwritten. As shown in Fig. 1, msg
points to a sequence of attack data that are inputted by attackers, and
these attack data have more than eighty bytes, including shellcode.
After executing strcpy(), all attack data will be copied into stack because
strepy() does not check the boundary of buf and msg. At this time, buf
and return address are already overwritten by attack data. Therefore,
the program control of this attacked program is transferred to the
shellcode when ret instruction in the victim function is executed. This
is a generic stack smashing attack that involves exploiting such an

Stack before attack Stack after attack

High Address|
I msg
stack buf return address address of shellcode

growth growth

|

previous frame pointer

buf shellcode

Low Address
void overflow(char* msg) void overflow(char* msg)
{ {
char buf[80]; char buf[80];
—, strcpy(buf,msg); strepy (buf,msg);
} —}

Fig. 1. Stack smashing attack.

unsafe copy to overwrite the return address on stack with the address
of shellcode.

2.2. Memory Pointer Corruption Attack

Memory Pointer Corruption Attack [4,27], we call it MPC attack
for short in this section, is a variety of stack smashing attacks. Fig. 2 is
a pattern of vulnerable function. If there is an application which has a
function like the one in Fig. 2, attackers will have a chance to launch
MPC attack. In real world, there is a ftp server called wu-ftp, version
2.5, which has a function called mapped_path() like Fig. 2. Thus, MPC
attack is not an imaginary problem. Hence, we will use Fig. 2 as an
example to demonstrate how to manipulate a MPC attack.

msg is an input of vulnerable function, and it points to a sequence of
data which are inputted by attackers. The sequences of data include
three main parts as follows.

1. Attack data.

Attack data will be used to rewrite the content of attack target.
2. Attack target.

Attack target is an address which is assigned by attackers.
3. Shellcode and other data.

After executing the first strcpy(), the contents of buf are rewritten
by attack data, and the content of msg is overwritten by attack target.
Besides, shellcode and other data are also copied into stack. At this
moment, titmsg is already changed to point to the attack target. Then,
attack data will directly rewrite the content of attack target after execut-
ing the second strcpy(). Therefore, we are able to rewrite anything on
anywhere of memory via controlling the input msg. There is a very
good sentence of Phrack Magazine [4] to appropriately describe MPC
attack: “When a buffer overwrites a pointer... The story of a restless
mind”.

Previous approaches [25,2] always considered that return address
stack is absolutely secure if it is set to be read-only. Then, attackers are
hard to modify the contents of return address stack even if they use
MPC attack. We also believe that return address stack is secure enough,
but modifying the contents of return address stack is not the only way to
hijack the program control from protected applications. Previous
approaches dynamically allocate an area to be the return address stack
when the protected application starts to run, so they must have an
Entry Pointer of the return address stack, we call it Entry Pointer for
short in this section, to be referenced by all protected functions. Entry
Pointer is as important as a key of encryption, but it is not protected by
previous approaches in any way because they only care of protecting
the return address stack. Therefore, attackers are able to rewrite Entry
Pointer to hijack the program control from protected applications that
are protected by previous approaches via manipulating MPC attack.

void vulnerability(char *msg, ...)

Stack
g High Address
char buf]80];
...// other declarations mse
t dd
strepy(but.mse); ok buf return address
Py MSE); " " previous frame pointer
growth grow
...// other codes \ buf
strepy(msg,buf);
} Low Address

Fig. 2. Vulnerable function.

Download English Version:

https://daneshyari.com/en/article/454699

Download Persian Version:

https://daneshyari.com/article/454699

Daneshyari.com

https://daneshyari.com/en/article/454699
https://daneshyari.com/article/454699
https://daneshyari.com

