ELSEVIER

Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

Photocatalytic reduction of nitrate ions to dinitrogen over layered perovskite BaLa₄Ti₄O₁₅ using water as an electron donor

Marie Oka^a, Yugo Miseki^a, Kenji Saito^{a,1}, Akihiko Kudo^{a,b,*}

^a Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan
^b Photocatalyst International Research Center, Research Institute of Science and Technology, Tokyo University of Science, 2641 Noda-shi, Yamazaki, Chiba-ken 278-8510, Japan

ARTICLE INFO

Article history: Received 18 February 2015 Received in revised form 13 May 2015 Accepted 17 May 2015 Available online 19 May 2015

Keywords: Photocatalysis Nitrate reduction Dinitrogen Boric acid Layered perovskite material

ABSTRACT

Photocatalytic reduction of NO_3^- to produce NO_2^- , NH_4^+ , and N_2 proceeded on $BaLa_4Ti_4O_{15}$ powder under UV irradiation accompanied with photochemical decomposition of NO_3^- to NO_2^- and O_2 without any sacrificial reagents. Loading of Cu and Ni cocatalysts enhanced the photocatalytic reaction to form N_2 . Ni was the most effective cocatalyst. The $BaLa_4Ti_4O_{15}$ photocatalyst with the Ni cocatalyst loaded by an impregnation method and subsequent H_2 reduction showed high activity for the reduction of NO_3^- to form NO_2^- , NH_4^+ , and N_2 . O_2 also formed as an oxidation product of water. The ratio of the number of reacted electron to that of hole was almost unity, indicating water was consumed as an electron donor for the reduction of NO_3^- . A boric acid of a buffer for pH control was effective to obtain a high yield of N_2 . The N_2 yield reached 85% in the presence of a boric acid after 10 h using a 400 W high-pressure mercury lamp in 10 mmol/L of an aqueous NaNO_3 solution, while it was 50% without the boric acid. The N_2 yield was almost 100% when 3 mmol/L of an aqueous NaNO_3 solution was used with a boric acid.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Nitrate ions contained in agricultural and industrial wasted water cause water pollution. Therefore, the development of efficient and clean processes for the elimination of nitrate ions has attracted attention. Electrochemical [1], photocatalytic [2–25], and biological [26] methods have been reported as the candidates for the process as well as a physical separation using a semipermeable membrane [27]. Among them, the photocatalytic process is very simple because just the dispersion of photocatalyst powder can be used: that is the significant advantage for the photocatalytic process. TiO₂ [2–18], ZnO [19], H₄Nb₆O₁₇ [6], SrTiO₃ [2,4], K_xGa_xSn_{8-x}O₁₆ [20], tantalates [21], CdS [22–24], and Ni-doped ZnS [25] have been reported as photocatalysts for reduction of nitrate ions. ZnO [19] with a wide band gap and CdS [2,22,23] with a visible light response are active photocatalysts for the reduction of nitrate ions to nitrite ions in the presence of reducing reagents

such as methanol without any cocatalysts. TiO₂, SrTiO₃, and CdS photocatalysts can produce NH₃ from NO₂⁻ [2]. Cocatalyst and reaction condition are important for the activity and selectivity of photocatalytic reduction of nitrate ions as for water splitting. For example, when Cu/TiO₂ is used, NH₃ and NO₂⁻ are obtained in acidic and basic aqueous solutions, respectively [8]. TiO₂ photocatalyst loaded with Cu-Pd alloy cocatalyst gives NH₃ efficiently [13]. Photocatalysts that can reduce NO_3^- to N_2 of a harmless product in the presence of sacrificial reagents are TiO₂ co-loaded with Pd and Cu [8], TiO₂:W,N [14], H₄Nb₆O₁₇ [6], and K_xGa_xSn_{8-x}O₁₆ [20] with UV light responses, and ZnS:Ni [25] with visible light response. However, a clean process should not require any sacrificial reagents. Noble metal cocatalyst-loaded TiO₂ [3-5] and Ni cocatalyst-loaded tantalate [21] photocatalysts reduce NO₃⁻ in the absence of sacrificial reagents accompanied with O₂ evolution of an oxidation product of water. Among them, Ni-loaded KTaO₃ photocatalyst shows high activity that 44% of NO₃⁻ can be converted to N_2 after 25 h using a 400 W high pressure mercury lamp [21]. We found that NiO-loaded BaLa₄Ti₄O₁₅ photocatalyst with layered perovskite structure shows high activity for water splitting into H_2 and O_2 in a stoichiometric amount [28]. The BaLa₄Ti₄O₁₅ photocatalyst powder with a plate-like shape reflecting the layered perovskite structure can be prepared by a polymerizable complex method. When Ag cocatalyst is loaded on the BaLa₄Ti₄O₁₅ powder, the photocatalyst is active for CO₂ reduction into CO using water

^{*} Corresponding author at : Department of Applied Chemistry, Faculty of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan. Tel.: +81 3 5228 8267.

E-mail address: a-kudo@rs.kagu.tus.ac.jp (A. Kudo).

¹ Current address: Office for Development of Young Researchers, Research Planning and Promotion Division, Niigata University, 8050 Ikarashi 2-no-cho, Nishi-ku, Niigata 950-2181, Japan.

Table 1

NO3⁻ reduction over BaLa4Ti4O15 photocatalyst with various cocatalysts.

Cocatalyst (wt%) ^a	Amounts of products after 10 h/µmol					Selectivity ^b %	N ₂ yield ^c %	e-/h+
	Reduction product				Oxidation product			
	H ₂	N ₂	NO_2^-	NH4 ⁺	0 ₂			
None	0.3	13	1900	0	1300	99	0.7	0.8
Ni(0.5)	5200	800	210	700	8300	57	45	0.7
Ni(1.0)	3100	790	320	610	7000	68	45	0.7
Ni(2.0)	960	810	960	510	5000	88	46	0.8
Ag(1.0)	1.5	13	2700	0	1300	99	0.7	1.1
Cu(1.0)	78	140	3000	0	2100	97	8	0.9

Catalyst: 0.5 g, solution: 10 mmol L⁻¹ of an aqueous NaNO₃ solution (350–370 mL), a 450 W high pressure mercury lamp, an inner irradiation quartz cell,

^a Loading method of cocatalyst: impregnation and H₂ reduction.

^b $(2NO_2^- + 8 NH_4^+ + 10 N_2)/(2H_2 + 2NO_2^- + 8 NH_4^+ + 10 N_2) \times 100.$

 $^{c}~(2N_{2})/(an initial amount of <math display="inline">NO_{3}^{-}) \times 100.$

as an electron donor [29]. It is interesting to apply this excellent $BaLa_4Ti_4O_{15}$ photocatalyst to the reduction of NO_3^- employing suitable cocatalysts. We preliminary reported the reduction of NO_3^- using the $BaLa_4Ti_4O_{15}$ photocatalyst [30].

In the present study, photocatalytic reduction of NO_3^- into N_2 was investigated using the $BaLa_4Ti_4O_{15}$ photocatalyst loaded with Ni cocatalyst that was effective for tantalate photocatalysts such as KTaO_3. Effects of a H_3BO_3 buffer on the activity and selectivity were examined. The reaction paths were also investigated.

2. Experimental

2.1. Preparation of BaLa₄Ti₄O₁₅ photocatalyst and a loading method of a cocatalyst

BaLa₄Ti₄O₁₅ photocatalyst was prepared by a polymerizable complex method according to the previously reported procedure [28,29]. BaCO₃ (Kanto chemical; 99.0%), Ti(OC₄H₉)₄ (Kanto chemical; 97.0%), La(NO₃)₃·6H₂O (Wako; 99.9%), propylene glycol (Kanto chemical; 99.0%), and citric acid (Sigma Aldrich; 99.0%) were used as starting materials. An aqueous Ni(NO₃)₂ solution containing the photocatalyst was evaporated to dryness and the resulting solid was calcined at 543 K in air. Reduction treatment was performed in the presence of 200 Torr of H₂ gas at 773 K for 2 h to obtain metallic Ni cocatalyst-loaded BaLa₄Ti₄O₁₅ photocatalyst.

2.2. Characterization

The photocatalyst was identified as a single phase by powder X-ray diffraction (Rigaku; Miniflex, Cu $K\alpha$). Scanning electron microscopy (SEM) images were taken using a JEOL JSM-6700F.

2.3. Photocatalytic reaction

Photocatalytic NO_3^- reduction was carried out in a gas-closed circulation system using an inner irradiation quartz cell containing 350–370 mL of an aqueous NO_3^- suspension of the photocatalyst (0.5 g). pH was controlled by an addition of H_3BO_3 into the suspension, if needed. A 400 W high-pressure mercury lamp was used as a light source. Gaseous products of H_2 , O_2 , and N_2 were determined by a gas chromatograph (Shimadzu, GC-8A) with a thermal conductivity detector (MS-5A, Ar carrier). NO_3^- of a reactant, and NO_2^- and NH_4^+ of products were analyzed by an ion chromatograph (TOA-DKK, ICA-2000, DS-plus, columns for cations and anions: PCI-302S and PCI-230, eluents for cations and anions: 4 mmol/L of HNO_{3aq} . (pH 2.4) and a mixed solution of 0.8 mmol/L of Na_2CO_{3aq} . and 2.4 mmol/L of $NaHCO_{3aq}$. (pH 9.9)).

3. Results and discussion

3.1. Photocatalytic reduction of NO_3^- over $BaLa_4Ti_4O_{15}$ photocatalyst

Table 1 shows NO₃⁻ reduction over BaLa₄Ti₄O₁₅ photocatalyst with various cocatalysts. Naked BaLa₄Ti₄O₁₅ photocatalyst gave NO₂⁻ and O₂. This is mainly due to not photocatalytic but photochemical reaction under UV irradiation (λ < 300 nm) [21]. A significant decrease in NO₂⁻ and increases in N₂, NH₄⁺, and H₂ were observed when Ni cocatalyst was loaded by an impregnation method and subsequent H₂ reduction. The activity depended on the loading amount of the Ni cocatalyst. The maximum N₂ yield and maximum total amounts of reacted electrons and holes were obtained at 0.5 wt% of the Ni cocatalyst. N₂, NH₄⁺, and H₂ were formed by photocatalytic reactions, whereas NO₂⁻ formed by not only photocatalytic but also photochemical reactions.

Ag cocatalyst did not give any significant effect on the photocatalytic NO_3^- reduction, although NO_2^- formation was enhanced. N_2 formation was enhanced on Cu cocatalyst-loaded BaLa₄Ti₄O₁₅ photocatalyst compared with naked BaLa₄Ti₄O₁₅. Although Cu cocatalyst gave a large amount of NO_2^- than Ni cocatalyst, formations of N_2 and NH_4^+ were suppressed as well as H_2 formation. The behaviors for NO_2^- and NH_4^+ formations on the Cu cocatalystloaded BaLa₄Ti₄O₁₅ photocatalyst were similar to those on Cu/TiO₂ in a basic aqueous solution [8]. These results were due to a large overpotential of Cu toward H_2 formation.

Ni cocatalyst that was loaded by an impregnation method and subsequent H₂ reduction showed high performance for the BaLa₄Ti₄O₁₅ photocatalyst. The high performance of the BaLa₄Ti₄O₁₅ photocatalyst is due to its high conduction band level, anisotropic crystal structure that enhances charge separation as observed for water splitting, and the suitable combination with a Ni cocatalyst. Kominami and co-workers have reported a high performance for N₂ formation on metal-loaded TiO₂ by NO₃⁻ and NO₂⁻ reduction in the presence and absence of a hole scavenger [16–18]. These reactions are not accompanied with O_2 evolution, because the hole scavenger and NO₂⁻ are oxidized instead of H₂O molecules. This is the significant difference between the TiO₂ and BaLa₄Ti₄O₁₅ systems. Although O₂ evolution is observed for NO₃⁻ reduction using Pt/TiO₂ photocatalyst, the main reduction product is NH₃ [3]. So, BaLa₄Ti₄O₁₅ is a unique photocatalyst for NO₃⁻ reduction as well as some tantalates [21].

3.2. Effect of pH on photocatalytic NO₃⁻ reduction over BaLa₄Ti₄O₁₅

pH of a reactant solution changed from 7 to 12 after 10h of a photocatalytic reaction time. The change in pH was mainly

Download English Version:

https://daneshyari.com/en/article/45470

Download Persian Version:

https://daneshyari.com/article/45470

Daneshyari.com