
Modular design of an open-source, networked embedded system

Ivan Cibrario Bertolotti a,⁎, Tingting Hu a,b

a CNR—National Research Council of Italy, IEIIT, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy
b Politecnico di Torino, Dipartimento di Automatica e Informatica, c.so Duca degli Abruzzi 24, I-10129 Torino, Italy

a b s t r a c ta r t i c l e i n f o

Article history:
Received 7 August 2013
Received in revised form 11 March 2014
Accepted 26 May 2014
Available online 5 June 2014

Keywords:
Open-source software
Embedded systems
Distributed systems

The ever increasing hardware capabilities typical of modern microcontrollers make it easier to add more and
more functions to embedded systems, even for relatively low-end ones. In turn, this raises new requirements
on their firmware, focusing on aspects like adherence to international and industrial standards, modularity,
portability, fast time to market, and integration of diverse software components.
This paper shows, by means of a case study, how to design a full-fledged networked embedded system
using only open-source components, including a small-scale real-time operating system. In addition, it
highlights how different components addressed key design issues, like inter-task synchronization and
communication.

© 2014 Elsevier B.V. All rights reserved.

1. Motivation

The complexity of modern embedded systems is constantly increas-
ing, especially for what concerns their firmware, as they must perform
more sophisticated functions than in the past. For instance, Internet
connectivity and data logging on commodity devices—for example, a
USB flash drive—are becoming widespread requirements, even on
relatively low-end equipment.

Although, on the one hand, this process is made smoother by
the substantial hardware capabilities nowadays provided by most
microcontrollers, it raises new challenges for software development,
too. As a consequence, topics like software modularity, portability, as
well as the ability to conveniently reuse software components in multi-
ple projects, are no longer relevant only for niche, high-end products.
On the contrary, they will be of more andmore widespread importance
in the near future.

This paper shows, by means of a case study, how a fully functional
networked embedded system, including its associated software devel-
opment tools, can be designed and implemented only out of open-
source components. Modularity and portability are emphasized by the
use of a real-time operating system as foundation, while the adoption
of open-source components maximizes re-usability and keeps software
development cost and time low.

At the same time, contrasting theways inwhich distinct components
address the same design issues (like, for instance, the operating system
interface for what concerns synchronization and communication

among concurrent code) is helpful to better appreciate the trade-offs
between them and their relative merits.

The paper is structured as follows: Section 2 outlines the general
structure of the system and its foundation, that is, the open-source soft-
ware development toolchain and a small-scale, real-time operating sys-
tem. Sections 3 through 5 discuss in more details the most important
system components, namely, the TCP/IP protocol stack, the USB-based
mass storage system, and fieldbus connectivity, respectively. In
Section 6 more information is given on the memory requirements
and performance of the components discussed in the previous sections,
which are often the most severe constraints in a small-scale embedded
system. Section 7 concludes the paper.

2. Embedded system architecture

This section outlines the main hardware and software components
of the system being considered in the case study. In addition, it provides
some information about the software development toolchain used to
build the executable form of the application software and the underly-
ing system components. Neither the software development toolchain
nor the real-time operating system will be discussed in detail in this
paper, because they are readily available for many popular platforms,
and hence, they can nowadays be considered a commodity item.

2.1. Hardware and software components

The hardware platform considered in the case study is built around a
LPC2468 microcontroller [1,2]. It embeds an ARM7TDMI [3] processor
core, running at amaximum speed of 72MHz, and a variety of other pe-
ripherals, including an Ethernet controller and several asynchronous se-
rial ports. The only external components required to gain Ethernet and

Computer Standards & Interfaces 37 (2015) 41–52

⁎ Corresponding author.
E-mail addresses: ivan.cibrario@ieiit.cnr.it (I. Cibrario Bertolotti),

tingting.hu@ieiit.cnr.it (T. Hu).

http://dx.doi.org/10.1016/j.csi.2014.05.004
0920-5489/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.05.004&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.05.004
mailto:ivan.cibrario@ieiit.cnr.it
mailto:tingting.hu@ieiit.cnr.it
http://dx.doi.org/10.1016/j.csi.2014.05.004
http://www.sciencedirect.com/science/journal/09205489


TIA/EIA-485 (formerly RS485) [4] connectivity are an Ethernet physical
layer interface (PHY) and a TIA/EIA-485 transceiver, respectively. The
TIA/EIA-485 interface has been considered because it is the physical-
level medium used by several widespread fieldbuses, for instance
PROFIBUS [5] and Modbus [6,7].

A limited amount of flash memory and static RAM is available on
chip, andmore can be added bymeans of an external memory interface.
Due to its characteristics and price tag, this microcontroller can be seen
as a typical component for low-cost, embedded systems.

From the software point of view, the aimwas to design a full-fledged
embedded system comprising Internet and fieldbus connectivity, as
well as access to a mass storage system based upon inexpensive USB
memory sticks. The design emphasizes modularity as a means to
achieve better code portability andmake it easier to reuse it in different
projects. The resulting system architecture is shown in Fig. 1. In the
figure, reusable system code modules are represented by gray boxes
and amount to a significant part of the total software load in typical
applications.

2.2. Software development toolchain and operating system

The most natural choice for an open-source software development
toolchain revolves around the GNU Compiler Collection [8] and related
components, namely:

1. Thebinutils [9] package provides an ample set of tools to build, ex-
amine, andmanipulate object and executable files.Most importantly,
it also contains the assembler and the link editor.

2. The gcc [8] component includes compilers for many popular
programming languages. In this case, it has been configured to
build only the compiler for the C programming language [10],
which is the programming language used by all the open-source
components considered in the project.

3. The newlib [11] package contains a runtime library for the C
programming language, including mathematical functions, specially
tailored for embedded systems.

4. The gdb [12] component provides a command-line based debugger.

Table 1 lists the exact version of the components used in the case
study. It should be noted that, although it is quite possible to build all
toolchain components starting from their source code—like it has been

done in the case study—it is often faster and easier to acquire them di-
rectly in binary form. As an example, at the time of this writing, Mentor
Graphics offers a free, lite edition of their Sourcery CodeBench toolchain
[14], which is able to generate code for a variety of contemporary
processor architectures.

A wide choice of real-time operating systems for embedded applica-
tions is nowadays available, for instance [15,13,16]. Basically, they rep-
resent different trade-offs between the extent of their application
programming interface (API) and their memory and processor require-
ments. For this case study, the choice fell on theFreeRTOS real-timeop-
erating system [13,17]. This was done in order to minimize memory
occupation, because memory is often a scarce resource in small embed-
ded systems. At the same time, as it will be better detailed in the rest of
the paper, this operating system still provides all the functions needed
to effectively support all the other modules.

The adoption of a small real-time operating system like FreeRTOS on
the embedded system platform of choice is usually not an issue. This is
because these operating systems are designed to be extremely portable—
also thanks to their limited size/complexity—and their source code
package is likely to already support the selected architecture with no
modifications required. In this case, a working C compiler is all what is
needed to build and use them.

3. TCP/IP protocol stack

The TCP/IP protocol stack used for the case study is lwIP [18]. With
respect to other competing open-source projects, lwIP was chosen be-
cause it is a good trade-off between tiny protocol stacks, like uIP [19],
and feature-rich, Berkeley BSD-derived protocol stacks [20]. In fact, at
one end of the spectrum, uIP aims at the absolute minimum memory
footprint, even at the cost of sacrificing some useful features—most
notably full reentrancy—to that purpose. On the other hand, the BSD
protocol stack was originally designed for workstation-class machines
and its footprint is often unsuitable for small embedded systems, as it
is also pointed out in [19].

In addition, lwIP has already been used successfully for distributed
computing with embedded systems [21] and its UDP protocol perfor-
mance has recently been thoroughly evaluated in an embedded com-
puting environment, with satisfactory results [22]. Last, but not least,
another advantage of choosing a simple, streamlined protocol stack is
that its internal structure is relatively easy to understand and well doc-
umented [19,23]. Hence, its adaptation to new processor architectures
and network devices is faster, easier, and produces more reliable code.

As shown in Fig. 2, the lwIP code can be informally divided into four
hierarchical levels.When lwIP is configured to support a single Ethernet
interface, as in the case study being described here, the code is executed
concurrently by (at least) three distinct tasks, listed in bottom-up order:

1. A low-level receive task associated with the Ethernet interface pulls
the incoming frames from the network interface itself and pushes
them into the main lwIP processing path.

2. Themain lwIP task (called “tcpip” task in the lwIP documentation al-
though, strictly speaking, it is quite unrelated to the TCP/IP protocol
itself) accepts incoming frames from the receive task described
above, as well as timer expiration events and application-layer re-
quests, by means of a message passing interface. The reception ofFig. 1. High-level architecture of the embedded system considered in the case study.

Table 1
Summary of the open-source system components used in the case study.

Name Version Purpose

binutils [9] 2.20 Utilities
gcc [8] 4.3.4 C Compiler
newlib [11] 1.17 C Library
gdb [12] 6.6 Debugger
FreeRTOS [13] 6.0.1 Operating System

42 I. Cibrario Bertolotti, T. Hu / Computer Standards & Interfaces 37 (2015) 41–52



Download English Version:

https://daneshyari.com/en/article/454718

Download Persian Version:

https://daneshyari.com/article/454718

Daneshyari.com

https://daneshyari.com/en/article/454718
https://daneshyari.com/article/454718
https://daneshyari.com

