
Rapid lossless compression of short text messages

Kenan Kalajdzic a,⁎, Samaher Hussein Ali c, Ahmed Patel a,b

a School of Computer Science, Centre of Software Technology and Management (SOFTAM), Faculty of Information Science and Technology (FTSM), Universiti Kebangsaan Malaysia, UKM Bangi,
43600 Selangor Darul Ehsan, Malaysia
b School of Computing and Information Systems, Faculty of Science, Engineering and Computing, Kingston University, Penrhyn Road, Kingston upon Thames KT1 2EE, United Kingdom
c Department of Information Network, Faculty of Information Technology (IT), University of Babylon, Babylon 00964, Iraq

a b s t r a c ta r t i c l e i n f o

Article history:
Received 28 November 2012
Received in revised form 27 May 2014
Accepted 28 May 2014
Available online 6 June 2014

Keywords:
Data compression
Lossless compression
Short text messages
SMS

In this paper we present a new algorithm called b64pack1 for compression of very short text messages. The
algorithm executes in two phases: in the first phase, it converts the input text consisting of letters, numbers,
spaces and punctuation marks commonly used in English writings to a format which can be compressed in the
second phase. The second phase consists of a transformation which reduces the size of the message by a fixed
fraction of its original size. We experimentally measured both the compression speed and the compression
ratio of b64pack on a large number of short messages and compared them with compress, gzip and bzip2,
three most common UNIX compression programs. We show that in case of short text messages up to a certain
size b64pack achieves better compression than any of the three programs. With respect to speed, b64pack
beats all three algorithms by orders of magnitudes. This rapid compression is one of the key strengths of
b64pack.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Until recent years, most algorithms for text compression were
primarily concerned with compressing large inputs. Fast adoption
of SMS messaging and Internet services based on short messages
(e.g. Twitter, chat) has caused an increased interest in compression
of very short texts. Interestingly, though, publications concerning com-
pression of short messages are relatively scarce.

Why is compression of short messages necessary? Given the high
volume of SMS, Twitter and instant messaging traffic, compression of
short text messages can bring tremendous savings in network band-
width. Could not multiple messages be first buffered to form a larger
chunk of data and then compressed with a regular compression
algorithm to achieve better results? The answer is: For realtime com-
munication, such as instant messaging or chat, buffering of multiple
messages is not possible, since each message has to be sent indepen-
dently and immediately after it is typed. Therefore we need a mecha-
nism to compress each of these short messages individually.

In case of SMSmessages, a system called concatenated SMS has been
developed to extend the inherent limit of an SMS message. It works by
breaking a longmessage into smaller parts and sending each of them as
a single SMS message. At the receiving end the short messages are

combined back to one long message. One downside of concatenated
SMS is that, if the length of an SMS message exceeds 140 bytes, the
user is usually charged for two SMS messages, even if the excess is
only a few characters long.

In this paper we introduce a new algorithm called b64pack for effi-
cient compression of very short text messages. In contrast with other
major works in short text compression, such as [1–3], which focus on
certain limitations of prediction by partial matching (PPM) compression
and provide ways to improve it, we follow a different approach.

To facilitate an easy deployment and interoperability across billions
of computers, mobile and embedded devices, we propose a compres-
sion scheme which relies on a straightforward use of standard open
source software libraries available on all operating systems. The use of
b64pack does not require any proprietary software components or
algorithms. We compare b64pack with other standard compression
algorithms implemented by programs such as compress, gzip and
bzip2 to demonstrate how applications and users could directly benefit
from using b64pack for compression of short messages. Our research
objective was to prove that b64pack is able to overcome certain
major drawbacks of existing SMS services. We did not specifically set
out or purport to evaluate against other data compression schemes,
and have used them merely as a reference for comparison.

The key features of b64pack are:

• extremely low memory requirements—a message compressed with
b64pack requires no header/metadata, while in the base case lookup
tables used by b64pack together occupy less than 256 bytes of
memory;

Computer Standards & Interfaces 37 (2015) 53–59

⁎ Corresponding author.
E-mail addresses: kenan@unix.ba (K. Kalajdzic), samaher@itnet.uobabylon.edu.iq

(S.H. Ali), whinchat2010@gmail.com (A. Patel).
1 b64 stands for BASE64.
1 b64 stands for BASE64.

http://dx.doi.org/10.1016/j.csi.2014.05.005
0920-5489/© 2014 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2014.05.005&domain=pdf
http://dx.doi.org/10.1016/j.csi.2014.05.005
mailto:kenan@unix.ba
mailto:samaher@itnet.uobabylon.edu.iq
mailto:whinchat2010@gmail.com
http://dx.doi.org/10.1016/j.csi.2014.05.005
http://www.sciencedirect.com/science/journal/09205489

• very efficient compression and decompression—all operations per-
formed by b64pack can be implemented very efficiently using few
CPU instructions, allowing b64pack to be used for realtime message
compression on low-power devices with energy consumption limita-
tions;

• precise estimation of the size of the compressed message during the
compression process—this feature allows users to know the size of
the compressed message while they are composing it;

• reliance on standard software libraries to facilitate rapid deployment
and interoperability on all types of computers, mobile and embedded
devices.

Other than the benefits mentioned above, b64pack is a fast process-
oriented algorithmic schemewhichwe believe should be considered by
developers, users and standards setting bodies as a viable compression
technique.

The plan for the remainder of the paper is as follows: in Section 2we
describe b64pack algorithm in detail. In Section 3, we provide experi-
mental data of performance and compare it with those of three well
known algorithms implemented by compress, gzip and bzip2.
Sections 4 and 5 deal with discussion, future work and conclusions.

2. The b64pack algorithm

As illustrated in Fig. 1, the b64pack algorithm consists of two
phases. The primary purpose of the first phase is to convert the input
text to a format which can be processed in the second phase. The
input can optionally be precompressed in this first phase to achieve
higher gross space savings. We assume that the input is a short text
message, consisting of letters, numbers, spaces and punctuation marks
commonly used in English writings. Even though there are no inherent
limitations imposed on the nature of the input, we demonstrate the
workings of b64pack by following the compression of an SMSmessage.
Therefore, we assume that the input text contains only those punctua-
tion marks, which have a definition within the GSM 03.38 character
set [4].

The output generated by the first phase is processed in the second
phase, which consists of a single transformation that reduces the size
of the message by a fixed percentage. This step is thus fully determinis-
tic and always results in the same, constant compression ratio.

An important characteristic of thewhole b64pack compression pro-
cedure is the absence of any metadata. This means that the compressed
message requires no header, which is highly important when working
with SMS messages or similar kinds of short texts which are inherently
limited to a small number of characters.

2.1. Message transcoding

The compression, which happens in the second phase of b64pack
algorithm, requires the input text to be transformed to a specific format.
To achieve this, the input is transcoded using the following simple rules:

Rule 1 Letters and numbers are left unchanged.
Rule 2 Each SPACE character is replaced with a forward slash ‘/’ character.
Rule 3 Each punctuation mark is replaced with a sequence of two charac-

ters: the plus ‘+’ character followed by a lowercase letter. The
correspondence between punctuation marks and their substitute
lowercase letters is established through Table 1.

Rule 3 applies to most common punctuation marks, for which
there is a single-character code in the GSM 03.38 character
set. For less frequently used punctuationmarks, GSM03.38 pro-
vides another representation consisting of two characters per
punctuation mark (first of these two characters is the escape
character 0x1b). For these we use the following rule in place
of Rule 3:

Rule 4 Each punctuationmark from the set of characters shown in the first
row of Table 2 is replaced with a sequence of three characters: two
plus ‘+’ characters followed by a corresponding letter from the
second row of Table 2.
To show how the transcoding procedure alters the input, we
use the examplemessage given in Fig. 2. The length of this mes-
sage is exactly 160 characters, which is the limit imposed on an
SMS message with 7-bit encoding. For clarity, spaces are repre-
sented by white boxes.
Following the aforementioned rules for transcoding, we trans-
form this message into the form shown in Fig. 3.
The use of the ‘+’ escape character for encoding punctuation
marks has led to an increase in message length from 160 to
173 characters. To reduce this loss, we make use of a simple ty-
pographic rule, which states that it is often appropriate to insert
a space after punctuation in order to increase the overall read-
ability of the text. This typographic convention has been used
multiple times in our example message (Fig. 2). Based on this
observation we can now introduce another simple encoding
rule:

Rule 5. If a punctuation mark is followed by a SPACE, this punctuation mark
is encoded according to Rule 3 or Rule 4, except that instead of a
lowercase letter its uppercase equivalent is used. In this case, the
encoded SPACE character (i.e., the forward slash character) is left
out.

For example, according to Rule 3, a questionmark followedby a SPACE

would be encoded as ‘+w/’. Rule 5 allows both these characters to be
merged into a two-byte sequence ‘+W’, thus preventing any loss caused
by the use of the ‘+’ escape character.

Following the same procedure, the whole message can be trans-
formed into the form shown in Fig. 4. The length of this message is
167 characters.

2.2. Compression of the transcoded message

A closer look at the transcoded message in Fig. 4 reveals an impor-
tant clue. Namely, all the characters which appear in this message are
part of the BASE64 character set.

BASE64 encoding maps an arbitrary sequence of 24 bits into a
sequence of four printable characters. In a given sequence of 24 bits
(i.e., three octets) of data

a1a2a3a4a5a6a7a8 b1b2b3b4b5b6b7b8 c1c2c3c4c5c6c7c8

in
Phase 1

lossless
transcoding

Phase 2
lossless

compression
out

Fig. 1. The phases of the b64pack compression algorithm.

Table 1
Mapping of punctuation marks to letters.

Character @ $ _ ! " # % & ’ () * +
Substitute a b c d e f g h i j k l m
Character , - . / : ; b = N ? □ □ □
Substitute n o p q r s t u v w x y z

□ = reserved for future use.

Table 2
Mapping of less frequent punctuation marks to letters.

Character [\] ⋀ { | } ~
Substitute a b c d e f g h

54 K. Kalajdzic et al. / Computer Standards & Interfaces 37 (2015) 53–59

Download English Version:

https://daneshyari.com/en/article/454719

Download Persian Version:

https://daneshyari.com/article/454719

Daneshyari.com

https://daneshyari.com/en/article/454719
https://daneshyari.com/article/454719
https://daneshyari.com

