
Stealth attacks: An extended insight into the
obfuscation effects on Android malware

Davide Maiorca*, Davide Ariu, Igino Corona, Marco Aresu, Giorgio Giacinto

Department of Electrical and Electronic Engineering, University of Cagliari, Piazza d'Armi, 09123, Cagliari, Italy

a r t i c l e i n f o

Article history:

Received 5 August 2014

Received in revised form

22 December 2014

Accepted 24 February 2015

Available online 14 March 2015

Keywords:

Android

Malware

Obfuscation

Evasion

DexGuard

Dalvik

Entry points

Signatures

Strings

Bytecode

a b s t r a c t

In order to effectively evade anti-malware solutions, Android malware authors are pro-

gressively resorting to automatic obfuscation strategies. Recent works have shown, on

small-scale experiments, the possibility of evading anti-malware engines by applying

simple obfuscation transformations on previously detected malware samples. In this

paper, we provide a large-scale experiment in which the detection performances of a high

number of anti-malware solutions are tested against two different sets of malware samples

that have been obfuscated according to different strategies. Moreover, we show that anti-

malware engines search for possible malicious content inside assets and entry-point

classes. We also provide a temporal analysis of the detection performances of anti-

malware engines to verify if their resilience has improved since 2013. Finally, we show

how, by manipulating the area of the Android executable that contains the strings used by

the application, it is possible to deceive anti-malware engines so that they will identify

legitimate samples as malware. On one hand, the attained results show that anti-malware

systems have improved their resilience against trivial obfuscation techniques. On the other

hand, more complex changes to the application executable have proved to be still effective

against detection. Thus, we claim that a deeper static (or dynamic) analysis of the appli-

cation is needed to improve the robustness of such systems.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Not surprisingly, malware writers are paying more and more

attention to mobile devices. In fact, the number of mobile

devices sold worldwide has already surpassed that of tradi-

tional personal computers. According to a recent report by F-

Secure, more than 99% of the new mobile malware families

discovered in 2014 targets the Android platform, which ac-

counts for more than 750 millions of active devices (F-Secure,

March 2014).

There are several reasons for which Android is a particular

interesting target for deploying malware:

1. Its open source nature allows an attacker to carefully study

the operating system implementation, thus increasing the

probability of finding vulnerabilities.

2. There are multiple alternative markets besides the official

one (Google Play), in which it is possible to find applications

that are not released through the support of Google (for

example, for copyright reasons) or to find popular premium

applications at a reduced price. Popular examples are the

* Corresponding author.
E-mail addresses: davide.maiorca@diee.unica.it (D. Maiorca), davide.ariu@diee.unica.it (D. Ariu), igino.corona@diee.unica.it

(I. Corona), arsu.ma@gmail.com (M. Aresu), giacinto@diee.unica.it (G. Giacinto).

Available online at www.sciencedirect.com

ScienceDirect

journal homepage: www.elsevier .com/locate/cose

c om p u t e r s & s e c u r i t y 5 1 ( 2 0 1 5 ) 1 6e3 1

http://dx.doi.org/10.1016/j.cose.2015.02.007
0167-4048/© 2015 Elsevier Ltd. All rights reserved.

mailto:davide.maiorca@diee.unica.it
mailto:davide.ariu@diee.unica.it
mailto:igino.corona@diee.unica.it
mailto:arsu.ma@gmail.com
mailto:giacinto@diee.unica.it
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cose.2015.02.007&domain=pdf
www.sciencedirect.com/science/journal/01674048
www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2015.02.007
http://dx.doi.org/10.1016/j.cose.2015.02.007
http://dx.doi.org/10.1016/j.cose.2015.02.007


Amazon or Samsung app stores (Amazon App Stores;

Samsung App Stores). However, many of these markets

provide insufficient control on the security of the applica-

tions, thus becoming the first source of mobile malware

(Comparatives).

3. Even if Google Play features an advanced dynamic analysis

system for detecting malware and spyware, called Google

Bouncer, several malware have managed to bypass it even

very recently (see, for instance, Labs; BGR; SecurityWatch).

4. The problem gets even more serious because of the bad

management of digital signatures in the Google Play store.

In order to upload an app to the store and install it on the

phone, an application must be signed with a certificate.

This certificate is also used as a reference for other appli-

cations to share their data. Sadly, many legitimate appli-

cations are signed with extremely insecure private keys

(i.e., private keys that can be easily obtained by an

attacker). It is therefore not so difficult for an attacker to

digitally sign a malicious application so that its certificate

would look trusted. In this way, it is even possible to replace

a legitimate app with its malicious variant through an

update process (Palo Alto Networks). Recently, a dangerous

vulnerability that exploited the lack of control in the cer-

tificate issuer by the Android cryptographic system has

been discovered, and it has been there until the most

recent versions of Android, including KitKat (4.4) (Bluebox,

January 2010).

To improve the security of the users, a number of different

anti-malware solutions have been developed. These solutions

perform an in-depth scan of the application, including its

bytecode, external resources such as images, audio and so

forth. Consequently, Android malware are getting more so-

phisticated, not only because of the different types of attacks

that they can implement (e.g., root exploits, embedded exe-

cutables, invisible layouts, encrypted C&C communications,

etc. (Jiang, 2011; Labs, 2011), but also for the possibility of

deceiving reverse engineering attempts or anti-malware

analysis through obfuscation (Unuchek, June 2013; Ionescu,

June 2012). In this paper, we refer to the term obfuscation as

actions that perform changes on the application while pre-

serving its semantics. For instance, they can modify its byte-

code, strings, or resource files. The aim of obfuscation is

making applications more difficult to be analyzed by humans

or automatic tools.

Obfuscation can be used to protect applications from being

plagiarized or cloned. However, some obfuscation strategies

might also be used to easily create new versions of the same

malware that are more difficult to analyze. The attacker is

motivated to adopt them, as automatic analysis tools often

rely on static signatures that can be easily evaded by changing

few elements of the applications (for example, replacing the

name of themethods). It is possible to find different examples

of obfuscation in the wild, such as those reported in (Yu, 2013;

Apvrille & Nigam; Ballano). A number of automatic tools,

available either as commercial products or for free, can be

used in order to easemalware obfuscation (Lafortune; Saikoa).

Previous works explored the world of obfuscation for the

Android platform, by pointing out how specific obfuscation

techniques can be effective to evade popular anti-malware

solutions (Zheng et al., 2012; Rastogi et al., 2013). In particular,

the work by Rastogi et al. (2014) clearly showed how anti-

malware systems are weak against easy-to-implement trans-

formation techniques. In particular, it showed that it is possible

to evade the vast majority of the most popular anti-malware

software for Android by applying a combination of obfusca-

tion techniques. It also showed that many anti-malware soft-

ware tend to rely on signatures that are weak and easy to

bypass. That work was carried out by testing obfuscation

techniques against six malware samples, where anti-malware

signatures were updated at the beginning of 2013.

1.1. Contributions

In this paper, we provide a deeper insight into the effects of

the obfuscation of Android malware. First, our interest is to

assess the current status of the anti-malware detection ca-

pabilities, as almost one year has passed since the analysis

made by Rastogi et al. We do so by deploying a large-scale

experiment on more than 50 malware families and two mal-

ware datasets, namely,Malgenome and Contagio, for a total of

more than 1200 samples (Zhou and Jiang, 2012; Parkour). We

obfuscate the malware samples in these datasets by means of

different strategies, which differ from each other in terms of

complexity (from simple ones such as class and methods

renaming, to complex ones such as reflection and class

encryption), and areas of the Android executable that are

targeted (e.g., strings, bytecode, or both). We experiment new

obfuscation strategies, and their combinations that have

never been tested in previous works (such as the combination

of obfuscation by Reflection and Class Encryption). Our tests

have been carried out by running 13 among the most popular

anti-malware solutions available on the Android market

Google Play. This experimental set-up provides, to the best of

our knowledge, the biggest assessment of anti-malware per-

formances against obfuscated samples in comparison with

previous works.

The second contribution of this work concerns the

assessment of the parts of the application that might be

decisive in the anti-malware detection process. To this end,

we focused on the incidence of external resources, such as

assets. We found that anti-malware engines resort to

analyzing and flagging external resources as malicious as an

aid for the detection, thus confirming the findings in previous

works. However, we also point out the extent to which the

analysis of external resources plays a key role in the final

outcome produced by anti-malware tools. To this end, we

show that by manipulating the assets of a malware sample it

is possible to evade the detection. We will also explain,

though, that while the ad-hoc manual implementation is

quite easy to deploy, its automatic version is quite difficult to

develop.

We also examine the role of entry-point classes in the

detection outcome of anti-malware systems detection. In

particular, we show that many anti-malware engines rely on

the analysis of such classes in order to perform malware

detection. While obfuscating such classes is not trivial, as it

might lead to completely break the application, we believe

that such a choice is reasonable, to the extent to which other

obfuscation strategies fail at evading detection.

c om p u t e r s & s e c u r i t y 5 1 ( 2 0 1 5 ) 1 6e3 1 17

http://dx.doi.org/10.1016/j.cose.2015.02.007
http://dx.doi.org/10.1016/j.cose.2015.02.007


Download English Version:

https://daneshyari.com/en/article/454726

Download Persian Version:

https://daneshyari.com/article/454726

Daneshyari.com

https://daneshyari.com/en/article/454726
https://daneshyari.com/article/454726
https://daneshyari.com

