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Solute transport in fractured rocks is of major interest inmany applications, from the petroleum
industry to ground water management. This work focuses on the dispersion process in a
transparent replica of a real single fracture. The fracture exhibits strong changes in
heterogeneity, with the first half very heterogeneous and the second half fairly
homogeneous. Three models have been used to interpret the tracer experiments: the
classical advection-dispersion equation (ADE), the continuous time random walk (CTRW),
and the stratified model. The main goals were to test these models and to study possible
correlations between fitting parameters and heterogeneities. As expected, the solution derived
from the ADE equation appears to be unable to model long-time tailing behavior. On the other
hand, the results confirm the CTRW robustness and the coefficient β seems well correlated to
heterogeneities. Finally, the stratified model is also able to describe non-Fickian dispersion. The
parameters defined by this model are correlated to the heterogeneities of the fracture.

© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Solute transport in fractured rock is of great interest in
groundwater pollution, CO2 sequestration, and oil recovery.
One of the main research areas in hydrogeology is the
selection of repository sites, either for nuclear waste or CO2

sequestration in geological formations. Integrity of reservoirs,
whichmay present imperfections such as fractures and faults,
is therefore a major issue, which makes flow characterization
in fractures essential. Experiments on transparent replica of a
real fracture have been wildly used to study two-phase flow
(Persoff and Pruess, 1995), aperture fields (Detwiler et al.,
1999, Isakov et al., 2001), and dispersion (Brown et al., 1998;
Detwiler et al., 2000; Lee et al., 2003). Most of the later works
focused on the outlet breakthrough curves, analyzing the
dispersion from the overall fracture properties. The goal of
this paper is the study of hydrodynamic dispersion due to
aperture field heterogeneities through the interpretation of
the breakthrough curves evolution along the flow direction.
One-dimensional solutions were derived from three models:
the advection-dispersion equation ADE, the continuous time

random walk CTRW and the stratified model. Their ability to
fit the breakthrough curves and the variation of their fitting
parameters with the distance was studied. Although the
experiment presented here is restrictive because of the
uniqueness of the fracture, this work shows how model
parameters may correlate with aperture field heterogeneity.
The experiment was performed with non-reactive solute in a
single-fracture with impermeable walls. The Peclet number
was high enough to neglect molecular diffusion and to focus
on the impact of the heterogeneities.

2. Theory

2.1. The advection-dispersion approach

The basic mass balance equation in one dimension is:

@C
@t

þ @F
@x

¼ 0 ð1Þ

where C is the average solute concentration and F is the mass
flux per unit area. In a piston-like displacement without
dispersion, the relationship between the flux and the
concentration is simply F = UC, with U the average fluid
velocity. In real tracer flow, the common approach for
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expressing the flux in accordance with the concentration is
based on a Fickian law as follows (Bear, 1988; Dullien, 1992):

F ¼ UC−D
@C
@x

ð2Þ

This leads to the well-known advection-dispersion equation,
ADE (Bear, 1993):
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@t

þ U
@C
@x

¼ D
@2C
@x2

ð3Þ

where D is the longitudinal hydrodynamic dispersion coeffi-
cient. With smooth walls and a constant aperture, D is the
Taylor–Aris dispersion coefficient (Brenner and Edwards,
1993; Dutta and Leighton, 2001), Dm + fU2B2 / Dm, where Dm

is the molecular diffusion coefficient, B is the aperture, and f is
a constant that depends on the cross-sectional geometry. For a
fracturewith varying apertures, D has a similar form,Dm + αU,
where α is the dispersivity (Bear, 1993). For a homogeneous
medium and for given initial and boundary conditions,
analytical solutions for Eq. (3) may be easily derived. In the
case of a step injection in a medium initially without solute:

if t V 0 then C x; tð Þ ¼ 0 8 x
if t N 0 then C x; tð Þ ¼ C0 for x ¼ 0

�
ð4Þ

the solution of Eq. (3) is thewell-knownOgata–Banks solution
(Ogata and Banks, 1961):

C
C0

¼ 1
2

erfc
x−Ut
2
ffiffiffiffiffiffi
Dt

p
� �

þ exp
Ux
D

� �
erfc

xþ Ut

2
ffiffiffiffiffiffi
Dt

p
� �� �

ð5Þ

This solution assumes a constant dispersion coefficient in time
and space in the range [0,x], and therefore gives reasonable
results for homogeneous media. Although very popular, the
ADE is known to fail with heterogeneousmedia since the early
60's (e.g., Coats and Smith, 1964). In particular, it is unable to
predict early breakthrough time and long-time tailing,
referred to as non-Fickian behavior (for an overview see, e.g.,
Sahimi, 1993; Bodin et al., 2003).

2.2. The continuous time random walk approach

The continuous time random walk theory (CTRW) has
been developed specifically to model conservative tracer
transport where behavior is non-Fickian (Berkowitz and
Scher, 1998; Berkowitz et al., 2001; Margolin and Berkowitz,
2004; Berkowitz et al., 2006). In one dimension, the particle
dispersion over a distance x in time t is modeled by a
transition probability density function ψ(x,t), which is
assumed to be stationary. Details of the theory and mathe-
matical development may be found in the references cited
above. Following Berkowitz et al. (2001), ψ(x,t) may be
approximated by a power law decay, t−1−β, where β is a
parameter that characterizes the dispersion regime. For βN2,
the process is Fickian and the CTRW is equivalent to the
classical advection-dispersion model. If 2NβN1, the process is
no longer Fickian; the location of the center of mass of the
tracer front, x0, travels at a constant velocity and the standard
deviation scales as t(3−β)/2. If 1NβN0, the ratio of x0 and the
standard deviation is constant and both scale as tβ. For a step

injection condition, there are analytical solutions that depend
on the value of β (Berkowitz et al., 2001):
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where β, τ, and r are three adjustable parameters. For a
distance Lx, τ is the mean transition time, and r is related to
the front spreading. If there are strong heterogeneities, the
center of mass of the tracer front does not flow at the average
fluid velocity, and τ is not necessarily the ratio between Lx
and the average fluid velocity. According to Berkowitz et al.
(2001), the mean velocity of the tracer front is mainly the
average fluid velocity for β N1. This approximation improves
as β increases above 1, but it is not usually verified for βb1.
With a stationary density function, β, τ, and r may be
determined at a distance Lx and derived at any other distance
λLx. The value β remains constant. τ scales as: λ1/βτ for β b1
and λτ for βN1. r scales as: λ(1−1/β)r for β b 1 and λ(1−β)r for
βN1.The C code implementation of solution (6) developed by
Berkowitz (http://www.weizmann.ac.il/ESER/People/Brian/
CTRW/) has been used to fit our data (Section 4).

2.3. The stratified medium approach

This approach is based on the idea of replacing a hetero-
geneous porous mediumwith an equivalent stratified medium
(Fourar, 2006). The displacement of the tracer in each layer is
assumed to be piston-like, with no dispersion, molecular
diffusion, or mass transfer across layers. The key parameter
characterizing tracer transport is shown to be theheterogeneity
factor, defined as the ratio of the standarddeviation to themean
permeability, also known as the variation coefficient.

We first consider a perfectly stratified medium with a
uniform porosity. The permeability of the layers is randomly
distributed, and the flow is parallel to the layers. Pore-scale
dispersion and molecular diffusion are negligible. For a step
injection at constant flow rate Q and concentration C0 at x = 0,
the concentration at position x and time t is given by:

C x; tð Þ ¼ C0 ∫
Kmax

K xð Þ G Kð ÞdK ð7Þ

where G(K) is the probability distribution of the permeability,
Kmax is the maximum permeability value, and K(x) is the
layer's permeability where the tracer front reaches position x
at time t. Taking a normal distribution defined for Ka[0,∞]:

G Kð Þ ¼ 1
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and using the fact that:

K xð Þ ¼ xhKi
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it follows that:
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