
A standard for developing secure mobile applications

Stephen M. Dye a,⁎, Karen Scarfone b,1

a Tapestry Technologies, Inc., 5000 Letterkenny Road, Chambersburg, PA 17201, United States
b Scarfone Cybersecurity, 13632 S. Springs Dr., Clifton, VA 20124, United States

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 June 2013
Received in revised form 8 September 2013
Accepted 19 September 2013
Available online 22 October 2013

Keywords:
Mobile device security
Mobile application security
Application security
Cyber security

The abundance of mobile software applications (apps) has created a security challenge. These apps are widely
available across all platforms for little to no cost and are often created by small companies and less-experienced
programmers. The lack of development standards and best practices exposes the mobile device to potential at-
tacks. This article explores not only the practices that should be adopted by developers of all apps, but also
those practices the enterprise user should demand of any app that resides on a mobile device that is employed
for both business and private uses.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The United States Department of Defense (DoD) published the first
publicly available standard that mobile applications (apps) can be de-
veloped by and tested against. The long-awaited standard enables
DoD personnel to more safely use a variety of apps that will improve
their mission performance, as well as to take advantage of apps to per-
form many tasks that cannot easily be accomplished on laptops. Unfor-
tunately, in bringingmobile devices to the DoDworkplace, the threat of
data disclosure or an accidental or intentional bridge between a DoD
network and the public Internet is significant. Because of the DoD's
high security needs and the large volumeof threats against its networks,
the DoD cannot allow apps to be used without thoroughly vetting their
functionality and analyzing their potential vulnerabilities.

Regardless of the stringent security measures practiced for mobility
by the DoD, there are numerous attack surfaces on a smartphone or tab-
let. These attack surfaces appear in the formof the high volume ofwide-
ly used apps. Each app represents a plethora of vulnerabilities not only
for the device and all data on it but also for the networks to which the
device is attached. Bringing a smartphone or tablet hosting a rogue
app into a DoDbuilding has the potential to compromise a DoD network
in multiple ways, allowing an attacker to gain access through the many
avenues a badly written or maliciously developed app offers.

To combat this, the DoD's Defense Information Service Agency
(DISA) developed a standard that may be used not only for developing

new apps but also for testing, vetting, and assessing existing apps. This
will provide a considerable degree of protection through applying con-
trols and best practices in use throughout the industry to reduce vulner-
abilities. The standard, known as the Mobile Applications Security
Requirements Guide [1] or the SRG, is available for public download
from the Information Assurance Support Environment.

This paper discusses key technical highlights from the standard.
Section 2 explores app vulnerabilitieswhile Section 3 focuses on operat-
ing system (OS) vulnerabilities. Section 4 discusses cryptography con-
cerns. Section 5 covers the security concerns not addressed in
Sections 2, 3, and 4. Section 6 examines mobile device software testing
and Section 7 briefly discusses related work in mobile security. Finally,
Section 8 provides a conclusion for the paper.

2. App vulnerabilities

One of the most common sources of vulnerabilities for mobile de-
vices is the actual vulnerabilities in the apps themselves. This section
discusses these vulnerabilities in the following categories: the app
code, input handling, initialization, termination, and external code.

2.1. The app code

The app code itself is the primary source of most app vulnerabilities.
The DoD requires that all parameters be initialized upon app startup to
prevent any values that would potentially cause a frozen or unstable
condition for the app, making the device more vulnerable and easier
to exploit. Controlling code is also of great importance, so any source
code that is never executed during runtime must not be included in
an app unless the source codewas provided by an approved third party.

Computer Standards & Interfaces 36 (2014) 524–530

⁎ Corresponding author. Tel.: +1 703 585 9399.
E-mail addresses: sdye@tapestrytech.com (S.M. Dye),

karen@scarfonecybersecurity.com (K. Scarfone).
1 Tel.: +1 703 401 1018.

0920-5489/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.csi.2013.09.005

Contents lists available at ScienceDirect

Computer Standards & Interfaces

j ourna l homepage: www.e lsev ie r .com/ locate /cs i

http://dx.doi.org/10.1016/j.csi.2013.09.005
mailto:sdye@tapestrytech.com
mailto:karen@scarfonecybersecurity.com
http://dx.doi.org/10.1016/j.csi.2013.09.005
http://www.sciencedirect.com/science/journal/09205489
http://crossmark.crossref.org/dialog/?doi=10.1016/j.csi.2013.09.005&domain=pdf


App code must never include hardcoded references to external re-
sources (e.g., an external IP address). Apps must not call functions that
are vulnerable to buffer overflows. Race conditions inwhich the app be-
comes unstable must also be avoided. Finally, the app must not contain
knownmalware; this may seem obvious, but the rate of app developers
using freeware routines and libraries that contain known malware re-
mains high.

2.2. Input handling

A key distinguishing feature of apps relative to traditional desktop
applications is that apps often have amuch broader set of inputs. In tra-
ditional applications, the input usually consists of standard keyboard
characters. Inmobile apps, user inputmay also consist of swiping or tap-
pingfingers on the display. Appsmay also accept inputs from sensors on
the device (e.g., a GPS radio, accelerometer, gyroscope, and ambient
light sensor.) Ideally, all forms of input are considered in an information
assurance (IA) assessment. However, the SRG currently considers only
character inputs.

Traditionally, the inputs to a program are where weaknesses can be
exploited, and an app is equally susceptible. When an app requires user
input, the input character set must be defined and constrained. This
means if the user is required to enter only numbers, then the app
must define the input set to be in the range 0–9, rejecting all letters
and symbols. An app that accepts undefined characters may experience
unanticipated behaviors. Equally important, the input field must be de-
signed to not be vulnerable to XML and SQL injection attacks. Injection
attacks may result in an immediate loss of integrity of the data. If an
app does not permit injection, then the risk of exploits from this form
of attack is greatly reduced.

Format string vulnerabilities usually occurwhen invalidated input is
entered and is directlywritten into the format string used to format data
in the print style family of C/C++ functions. Format string vulnerabil-
ities may lead to information disclosure vulnerabilities and may also
be used to execute arbitrary code, so the SRG requires that apps must
not be vulnerable to such conditions. If an attacker canmanipulate a for-
mat string, this may result in a buffer overflow. If the app code does not
contain format string vulnerabilities, then the risk of buffer overflows
and other software exploits is significantly mitigated.

2.3. Initialization

The behavior of an app must be controlled within limits to prevent
exploitation by a third party when the app fails to initialize. If an app re-
lies on external security functions such as software modules that en-
crypt data, then the app must shut down, reset, or perform some
safeguard action if a security module or function is unavailable. This re-
quirement applies at app startup and during runtime. While mobile
apps primarily rely on mobile OS security controls, a mobile app may
contain security functions that enable the device and user to operate
in a secure manner.

For example, the mobile app may operate its own cryptographic
modules for data at rest and data in transit. If these modules are not
present, then all data, the device, and the network would be at risk to
exposure and intrusion from an unauthorized user if the app does not
prevent its own execution. This measure mitigates risk and exposure
from being compromised due to failed or disabled security modules.
When the app shuts down it must cease running and not just deny ser-
vices to a user. Other response actionsmight includewriting an entry to
the audit log, notifying the user, or limiting access to particular app fea-
tures, such as the ability to export data.

2.4. Termination

For many mobile apps, the only state that is known to be compliant
is the initial state, because there is no documented security policy

regarding state transitions. An app could be compromised, providing
an attack vector to the app and OS if shutdown and aborts are not de-
signed to keep the app in a secure state. DoD therefore requires that
an app fails to an initial state if it unexpectedly terminates, thus
returning the app and device to the secure state they were previously
in. An app maintains a secure state when there is strong assurance
that each of its state transitions is consistentwith the app's security pol-
icy. If the app fails without closing or shutting down processes or open
sessions, authentication and validationmechanisms do not provide suf-
ficient protection against unauthorized access to the app and all stored
data. Securing the app to its initial level of security in the event the app
crashes or terminates will mitigate the threat of an unauthorized user
taking control of the device and accessing the app and stored data,
compromising integrity and confidentiality.

The SRG requires that upon termination, each app remove all tempo-
rary files and tracking cookies it created during the session. Temporary
files left on the system after an app has terminated may contain sensi-
tive information, including authentication credentials or session identi-
fiers that would enable an adversary to re-launch the app, gain
unauthorized access to resources, or otherwise breach the confidential-
ity or integrity of the data stored on the device. Removing such files
when an app terminates greatly mitigates the risk of this type of attack.
Finally, any memory blocks that were used to store and process sensi-
tive data must be cleared or overwritten to completely eradicate any
trace of that data. Unless an app does this, the possibility exists for an at-
tacker to crash the app, then analyze amemory dumpof the app for sen-
sitive information. Clearing memory will ensure that the app can
operate more securely, with greater protection applied to sensitive
data that will be properly removed when no longer required.

Finally, in the area of app termination, the SRG also covers
transaction-based issues. Transaction-based systems must have trans-
action rollback, journaling, or technical equivalents implemented to en-
sure that the system can recover from an attack or faulty transaction
data, preventing denial of service attacks.

2.5. External code

Mobile code is code downloaded from a remote source and executed
on the device without user direction. Typically, mobile code is executed
within web browsers. However, some apps may have the capability to
execute such code in a similar fashion to a web browser. This poses a
significant IA risk because such code would not have been reviewed
and could perform unauthorized functions. The SRG requires that all
apps must comply with the DoD Mobile Code Policy which essentially
means the appmust validate the signature on all ActiveX and script lan-
guages interpreted at the OS command level. This is also true for code
that has full functionality to the services and resources of a device
such as Java mobile code and the various scripting languages running
within the confines of a browser. DoD is assuming that a level of security
exists through acknowledging a valid digital signature, which implies
that a trusted source created the code, and that it contains no malware.
If no signature is present or the signature could not be verified, then the
app must not execute it. Further to this, DoD requires that any mobile
code in the app not only be signed, but also be mobile code that has al-
ready been categorized. Any uncategorized code, even though poten-
tially safe, must not be used.

Embedding interpreters in an app to invoke prohibited code will ex-
pose the device and stored data to many forms of malicious attack.
Prohibited code is intentionally not used in order to maintain the secu-
rity and integrity of the device and all stored data. The SRG therefore re-
quires that the app code must not include interpreters for any
prohibited code as well.

Before external code that the app downloads during runtimemay be
executed, the DoD requires the user to (i) be notified that the code is
being downloaded and (ii) be given the option to authorize execution
of this code. Finally, the DoD requests that any APIs or external

525S.M. Dye, K. Scarfone / Computer Standards & Interfaces 36 (2014) 524–530



Download English Version:

https://daneshyari.com/en/article/454738

Download Persian Version:

https://daneshyari.com/article/454738

Daneshyari.com

https://daneshyari.com/en/article/454738
https://daneshyari.com/article/454738
https://daneshyari.com

