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It has long been realized that approaches using satellite ocean-color remote sensing are the only feasible means
to quantify primary productivity (PP) adequately for the global ocean. Through decades of dedicated efforts and
with the help of various satellite ocean-color missions, great progresses have been achieved in obtaining global
PP as well as its spatial and temporal variations. However, there still exist wide differences between satellite
estimations and in situ measurements, as well as large discrepancies among results from different models. The
reasons for these large differences are many, which include uncertainties in measurements, errors in satellite-
derived products, and limitations in the modeling approaches. Unlike previous round-robin reports on PP
modeling where the performance of specific models was evaluated and compared, here we try to provide a
candid overview of three primary modeling strategies and the nature of present satellite ocean-color products.
We further highlight aspects where efforts should be focused in the coming years, with the overarching goal of
reducing the gaps between satellite modeling and in situmeasurements.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Photosynthesis is a process that occurs on the illuminated Earth. In a
complex light-dependent process, photosynthesis transfers absorbed
photon energy to organic compounds (Falkowski and Raven, 2007).
Since this process ultimately leads to the conversion of inorganic carbon
to organic carbon, photosynthesis not only plays an important role in
the global carbon cycle, but also provides the food to support all
the heterotrophs. In the ocean, phytoplankton are the primary
photosynthesizers, supporting the ocean's food web. As realized
~50 years ago (Goldman, 1965), because of the vast expanse of the
oceans, detailed information about the temporal and spatial variation
of oceanic photosynthesis is essential for studying and understanding
air–sea CO2 exchange, carbon fixation, and vertical export — the so
called “biological pump” (Antoine et al., 1996; Behrenfeld et al., 2002;
Bosc et al., 2004; Dunne et al., 2005; Falkowski et al., 2003; Nevison
et al., 2012; Platt and Sathyendranath, 1988; Sathyendranath et al.,
1995).

The production of organic carbon during photosynthesis is defined
as primary productivity (PP, or net primary productivity, NPP; Cullen,
2001; Marra, 2002; Platt and Sathyendranath, 1993). In the ocean, PP
provides a measure of inorganic carbon fixed by phytoplankton per

unit of water volume per unit of time. Integration of this rate over
desired basins and for a given period of time (e.g., a year) provides a
measure of carbon transformation for that area for that time period. It
has been – and remains – an elusive goal for researchers in biological
oceanography to obtain accurate and consistent estimates of PP for
the global oceans. Beside limitations in measurement technology
(Cullen, 2001; Marra, 2002; Platt and Sathyendranath, 1993), the
major limitation is the extreme under sampling of the oceans (Perry,
1986), where the spatial and temporal variations in water properties
(including optical, chemical, and biological, etc.) cannot be easily
scaled-up from a few measurements made at limited space–time grids.

To overcome such spatial–temporal limitations, it has long been rec-
ognized that the repetitive measurement by satellite sensors provides
the only possible and feasible means for the estimation of PP on basin
and global scales (Eppley et al., 1985; Falkowski, 1998; Perry, 1986;
Platt, 1986), i.e., to obtain estimates at large scales by linking discrete
in situmeasurements with the synoptic and repetitive satellite observa-
tions. The linkage for this scaling-up, as discussed in detail in later sec-
tions, is centered on information on phytoplankton (either a biological
property such as chlorophyll concentration or an optical property such
as phytoplankton absorption coefficient). This is based on the fact that
phytoplankton not only plays a key role in photosynthesis, but also
alters the appearance of ocean (water) color. Therefore, when a rela-
tionship between PP and phytoplankton is developed, the estimation
of basin-scale PP becomes possible when the information of
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phytoplankton can be derived from the measurement of ocean color by
a satellite sensor. Because of this necessity, the estimation of the global
phytoplankton (and then oceanic PP) is a central goal of all ocean-color
satellite missions (IOCCG, 1998;McClain, 2009), which include the Sea-
Viewing Wide Field-of-View Sensor (SeaWiFS) and the MODerate-
resolution Imaging Spectroradiometer (MODIS) supported by NASA,
and the Medium Resolution Imaging Spectrometer (MERIS) supported
by ESA. In addition, new and advanced ocean color satellites are on
the horizon, including the Pre-Aerosol Cloud and Ecosystems (PACE,
NASA) mission and the Ocean and Land Colour Instrument (OLCI,
ESA). At the same time, in order to properly scale-up the limited
field measurements with satellite data, various models have been
developed (e.g., Antoine and Morel, 1996; Arrigo et al., 2008; Balch
et al., 1989b; Behrenfeld, 1998; Dierssen et al., 2000; Ishizaka,
1998; Kahru et al., 2009; Longhurst et al., 1995; Ondrusek et al.,
2001; Sathyendranath and Platt, 1995; Sathyendranath et al., 1989;
Sathyendranath et al., 1991) and estimates of global oceanic PP
have been achieved (Antoine et al., 1996; Behrenfeld et al., 2002;
Longhurst et al., 1995; Platt and Sathyendranath, 1988).

After decades of practice, however, the estimates based on satel-
lite remote sensing are far from satisfactory. For instance, results
from the Joint Global Ocean Flux Study (JGOFS) (Ducklow, 2003)
have found that, in four of eight oceanic provinces (Longhurst
et al., 1995) where data are available for PPbasin-year (basin-scale, annual,
depth-integrated primary production) from both in situ measurements
and from the measurements of the Coastal Zone Color Scanner (CZCS),
the satellite estimates were a factor of two or three smaller than the
measured values. In only two out of the eight provinces were the
CZCS PPbasin-year within 20% of the measured values. If the comparison
is made on local-daily instead of basin-year scales regarding the spatial
and time ranges, the disagreement could bemuch larger betweenmea-
sured and ocean color-derived PPeu (daily depth-integrated primary
production) as shown in some studies (e.g., Balch et al., 1989a;
Behrenfeld and Falkowski, 1997b; Quay et al., 2012), although better
results were presented in Platt and Sathyendranath (1988) and
Kyewalyanga et al. (1997).

The discrepancies between modeled and measured PP, and among
modeled PP, were also highlighted in a series of round-robin experi-
ments (Campbell et al., 2002; Carr et al., 2006; Friedrichs et al., 2009).
Even with measured chlorophyll concentration as an input, Campbell
et al. (2002) found that PP estimates from the best-performing algo-
rithms were generally within a factor of 2 of measured PP; while Carr
et al. (2006) found that global average PP varied by a factor of 2 between
modelswhen input parameters (chlorophyll concentration and solar ra-
diation) were derived from SeaWiFS. For a dataset consisting of ~1000
in situ measurements in the tropical Pacific, Friedrichs et al. (2009)
found that all models underestimated the observed variance of PP,
and no models successfully captured a broad-scale shift from low
biomass-normalized productivity in the 1980s to a higher biomass-
normalized productivity in the 1990s.

Such inconsistent results undermine the confidence of using prima-
ry production estimated from satellite ocean color to study the “biolog-
ical pump” in the oceans, and suggest that there is difficult work ahead
in designing the strategy and system for estimating primary production
based on remotely sensed data. Here we try to provide a candid over-
view of the strategies in estimating PP from ocean color remote sensing,
discuss the status of “standard” satellite ocean-color products, and high-
light areaswhere efforts should be focused on for improving the estima-
tion of PP from satellite ocean color remote sensing.

2. Principles of ocean color remote sensing

It has been known for centuries that the change of water (ocean)
color reflects change of constituents in the water column. To be able
to quantitatively, andmechanistically, estimate the constituent concen-
trations, models have been developed to link ocean color with desired

constituents. In ocean color remote sensing, “ocean color” is commonly
described with the spectrum of remote-sensing reflectance (Rrs(λ),
sr−1), which is defined as the ratio of water-leaving radiance to
downwelling irradiance just above the surface. “Water-leaving radi-
ance” represents photons originating from absorption and scattering
processes below the surface and emitting into space, which excludes
photons going to space due to sea-surface reflectance, a process having
no information of in-water constituents.

Based on the radiative transfer theory, Rrs can be expressed as
(Gordon et al., 1988; Sathyendranath and Platt, 1997; Zaneveld, 1995)

Rrs≈0:53 g0 þ g1
bb

aþ bb

� �
bb

aþ bb
: ð1Þ

Here a and bb are the total absorption and backscattering coefficients,
respectively, and wavelength dependence is omitted for brevity. g0
and g1 are model coefficients, which are spectrally independent,
although slightly varying with sun-sensor angular geometry (Albert
and Mobley, 2003; Lee et al., 2011a; Morel and Gentili, 1993).

a and bb are bulk inherent optical properties (IOPs) (Preisendorfer
andMobley, 1984), which are sums of the contributions of various con-
stituents (Stramski et al., 2001), with the primary components as water
molecules, suspended particulates and dissolvedmaterials (also termed
as “gelbstoff”, etc.). Practically, the bulk IOPs are generally described as

a ¼ aw þ aph þ adg;
bb ¼ bbw þ bbp;

ð2Þ

with subscripts “w, ph, dg, p” representing water, algae pigments, the
combination of detritus and gelbstoff, and particles, respectively. Values
of aw and bbw have been measured or derived from laboratory or field
measurements (Morel, 1974; Pope and Fry, 1997; Smith and Baker,
1981), and are considered global constants (vary slightly with temper-
ature and salinity) (Pegau et al., 1997; Sullivan et al., 2006). aph, adg
and bbp, on the other hand, vary spatially and temporally, and are
considered as volatile properties.

For studies in ocean biology and biogeochemistry, traditionally the
focus of ocean color remote sensing is on the concentration of chloro-
phyll, thus the component IOPs are commonly expressed as

a ¼ aw þ a�ph � Chlþ GChl � a�ph � Chl;
bb ¼ bbw þ b�bp � Chl:

ð3Þ

Here aph⁎ and bph⁎ are the chlorophyll-specific (or concentration of chlo-
rophyll normalized) absorption and chlorophyll-specific backscattering
coefficients (m2/mg), respectively, with Chl the concentration of
chlorophyll (mg/m3). GChl is the ratio (at a specific wavelength, such
as 440 nm) of adg to aph.

Therefore, if values of aph⁎ , bbp⁎ and GChl are known, or if they co-vary
with Chl, Eq. (1) is a function of one variable: Chl, which can then be
solved from known Rrs. Because particle backscattering coefficient
(bbp) could not be accurately modeled with Chl alone (see Stramski
et al., 2001), bbp⁎ encompasses a wide range of variations for a given
Chl (Babin et al., 2003; Loisel and Morel, 1998). To minimize the impact
of this variation on the retrieval of Chl from Rrs, usually the band ratio of
Rrs (either blue to green, or red to green; Le et al., 2013) is used as input,
with a general form as (Gordon and Morel, 1983; O'Reilly et al., 1998)

Chl ¼ f 1 Rrs

�
λi

� �
=Rrs

�
λ jÞÞ: ð4Þ

Here f1 stands for function number 1. Following Eqs. (2–3), in essence
the above ratio algorithm includes (assuming the impact of parameter
bbp⁎ is minimized through the Rrs ratio), implicitly, variables other
than the ratio of Rrs (Carder et al., 1999; Gordon et al., 1988;
Sathyendranath and Platt, 1989; Sathyendranath et al., 1994)

Chl ¼ f 1
�
a�ph;GChl;Rrs λið Þ=Rrs

�
λ jÞÞ: ð5Þ
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