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We consider the problem of combined state–parameter estimations in biased nonlinear models with non-
Gaussian extensions of theDeterministic Ensemble KalmanFilter (DEnKF).We focus on theparticular framework
of ocean ecosystem models. Such models present important obstacles to the use of data assimilation methods
based on Kalman filtering due to the non-linearity of themodels, the constraints of positiveness that apply to the
variables and parameters, and the non-Gaussian distribution of the variables in which they result.
Wepresent extensions of theDEnKF dealingwith these difficulties by introducing a nonlinear change of variables
(anamorphosis function) in order to execute the analysis step with Gaussian transformed variables and
parameters. Several strategies to build the anamorphosis functions are investigated and compared within the
framework of twin experiments realized in a simple 1D ocean ecosystemmodel. A solution to the problem of the
specificationof the observation error for transformedobservations is suggested. The studyhighlights the inability
of the plain DEnKF with a simple post-processing of the negative values to properly estimate parameters when
constraints of positiveness apply to the variables. It goes on to show that the introduction of the Gaussian
anamorphosis can remedy these assimilation biases.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The knowledge of the status of marine resources should be closely
monitored in a changing climate, so analysis and short term forecasts of
the primary production are needed by environmental agencies for
monitoring algal blooms and possiblemovement of the fish populations
(Allen et al., 2008; Johannessen et al., 2007). To that end, within the
framework of the MyOcean1 project, research activities attempt the
reanalysis of the primary production and the biological components
of the oceans, notably for the Arctic through the Arctic Marine
Forecasting Center.

The numerical ecosystem models developed during the last decades,
as well as their coupling with existing physical ocean models, are a
necessary step, together with the direct observation of the ocean biology,
to meet these goals. Nevertheless these models present numerous un-
certainties linked to the complexities of theprocesses that they attempt to
represent and the parameterizations that they introduce. Even though
many improvements have been made in the modeling of ocean eco-
systems, themodels are still too simple incomparison to thecomplexityof
the ocean biology. Parameters remain poorly known, cannot be observed
(lack of direct measure) and may vary in space and in time (Losa et al.,
2003; Losa et al., 2004). Furthermore, due to the key role played by the

parameters or themathematicalmodel chosen for the parameterizations,
wrong specifications of parameters can lead to large model error.

The data assimilation methods, thanks to their ability to combine in
an optimal way the heterogeneous and uncertain information provided
by the models and the observations, are relevant tools to tackle the
problem of parameter calibration. The feasibility and the potentialities
of simultaneous state and parameter estimations with ensemble-based
Kalman filters have been demonstrated by Anderson (2001), who
augmented the state vectorwith theparameters toestimate. In the same
way, experiments of combined state–parameter estimations conducted
in a simple linear scalar model (Evensen, 2006) highlighted the abilities
of theEnsembleKalmanFilter (EnKF;Evensen(1994, 2003)) to calibrate
a poorly knownparameter. This approach has also proved to be efficient
even for large scale applications, as highlighted by the twin experiments
in an earth system model of intermediate complexity (Annan et al.,
2005). Furthermore, theauthors introduce logarithmtransformations to
guarantee the positiveness of several diffusion parameters during the
estimation. The performance of the EnKF in combined state–parameter
estimations have been carefully evaluated in a 2-D sea-breezemodel by
Aksoy et al. (2006). In the framework of ocean biogeochemistry, Losa
et al. (2004) successfully applied weak constraint variational data
assimilation to estimate parameters in a 0-D ecosystem model.

Nevertheless application of data assimilation methods to ecosystem
models in an efficient way is a theoretically and practically challenging
issue. On the one hand, the strongly nonlinear behavior of ecosystem
models (especially during the period of the spring bloom) raises the
question of which stochastic model to use (Bertino et al., 2003). On the
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other hand, one is also confronted with the model constraints. Most
variables of ecosystem models are concentrations of a biological tracer,
and cannot be negative. In the sameway, parameters are positive. These
non-Gaussian distributions of most biogeochemical variables and
parameters break an important assumption of the linear analysis,
leading to a loss of optimality of the EnKF (and other linear filters). The
optimality of the linear statistical analysis is proved under some
assumptions, notably an assumption of Gaussianity made on the
distribution of the variables (of the model and the observations) and
the errors. Twin experiments of combined state–parameter estimations
with the Lorenz model done by Kivman (2003) highlighted the
difficulties — indeed the inability — of the EnKF to recover the true
value of positive parameters in nonlinear models. This study confirmed
also the benefits of using nonlinear methods like particle filters in such
non-Gaussian frameworks. Unlike the EnKF, the application of an
extension of a Sequential Importance Resampling filter (SIR; see Doucet
et al., 2001) led to successful estimations of the true valueof parameters.
In the same way, Losa et al. (2003) successfully applied a SIR filter for
combined state–parameter estimations in a 1-D ecosystem model.
Indeed, particle filters seem attractive for such models as they are
variance minimizing schemes for any probability density function.
However, the sizeof theensemble required for anefficient application of
such a filter is too large to be considered for realistic configurations
(Snyder et al., 2008). We refer to the review of van Leeuwen (2009) for
more details about particle filters.

AneasymethodofperformingKalmanfilter estimation inanextended
framework of variables with non-Gaussian distributions involves the
introduction of the Gaussian anamorphosis into the filter, as suggested by
Bertino et al. (2003). The idea is to introduce non-linear changes of
variables (anamorphosis functions) in order to realize the analysis step
with Gaussian distributed transformed variables. The numerical experi-
ments of model state estimation that they conducted in a 1-D ocean
ecosystemmodel highlighted the potential of this approach. In a previous
study (Simon and Bertino, 2009), we demonstrated that this non-
Gaussian extension of the EnKF could be easily applied to performmodel
state estimations in realistic configurations. Twinexperimentsdone ina3-
Dconfigurationof theNorthAtlantic andArctic oceanshighlighteda slight
advantage in effectiveness compared to the plain EnKF with post-
processing of the negative values. This advantage has been recently
confirmedbyDoronet al. (2011) in the frameworkof twin experiments of
combined state–parameter estimations in a 3-D ocean-coupled physical–
biogeochemical model. The unique analysis performed during the spring
bloom highlighted the ability of this non-Gaussian extension of the
Kalman filter “to retrieve consistently the maps of parameters and thus
reduce their prior uncertainty”, as stated by the authors. Nevertheless, this
study does not provide information about potential assimilation bias that
might occur after several cycles of analysis.

The present study extends our previous research to the problem of
combined state–parameter estimations in inevitably biased ecosystem
models, andwe focus on Kalman filtering.More information concerning
the more general problem of Gaussian statistical modeling in data
assimilation can be found in Bocquet et al. (2010). The aim of this study
is to demonstrate that the Deterministic Ensemble Kalman filter
(DEnKF; (Sakov and Oke, 2008)) — and more generally ensemble-
based Kalman filters — remains a high-performance tool for the
estimation of biased parameters in such non-Gaussian frameworks
involving positive state variables and parameters, provided that the
variables andparameters are appropriately transformedbeforeandafter
the analysis. In thatway,we focus on the strategies to empirically design
theanamorphosis functions. Attention is alsogiven to theproblemof the
specification of the observation error for the transformed variables.

The outline of this paper is as follows. We present a non-Gaussian
extension of the DEnKF and different strategies to build the anamor-
phosis function in Section 2. We describe our experimental framework
in Section 3, present and discuss our results in Section 4 and make our
conclusions in Section 5.

2. Non-Gaussian extensions of the deterministic ensemble Kalman
filter

Wedescribe in this sectionaway todesign anon-Gaussianextension
of the DEnKF. Essentiallywe introduce nonlinear changes of variables in
order to realize the analysis stepwith Gaussian distributed transformed
variables, while the forecast step is done in the physical or biological
space.

2.1. The deterministic ensemble Kalman filter with Gaussian anamorphosis

As suggested by Bertino et al. (2003) for the EnKF, the algorithm is
based on the skeleton of the DEnKF and divides into two steps:

Forecast: the forecast step is a propagation step that uses a Monte-
Carlo sampling to approximate the forecast density by N realizations:

∀i = 1 : N; x f ;i
n = fn−1 xa;i

n−1; �
m;i
n

� �
ð1Þ

with xn the state vector at time tn, fn−1 the nonlinear model and �mn the
model error. The superscripts f and a stand for forecast and analysis.

Analysis: the analysis step conditions each forecast member to the
new observation yn by a linear update. The anamorphosis functions are
introduced in this step.

For each variable of the model, at time tn, we apply a function ψn

which is a nonlinear bijective function from the physical space to a
Gaussian space. We transform each variable separately. In order to
simplify the notations, we consider the monovariate case (i.e., there is
only one function ψn). It reads:

∀i = 1 : N; x̃ f ;i
n = ψn x f ;i

n

� �
: ð2Þ

In practice, this means that we apply a transformation to each
variable in every point of the discretized domain.

In the same way, we introduce an anamorphosis function χn for the
observations yn at time tn:

ỹn = χn ynð Þ: ð3Þ

The observation operator H links the physical variables and the
observations. We define the observation operator H̃n linking the
transformed variables and observations by the formula

H̃n = χn∘H∘ψ
−1
n ð4Þ

where ∘ defines the function composition.
The linear analysis is done with the transformed variables and

observations according to the equations for the updates of themean and
theensembleanomalies of theDEnKFdescribed inSakovandOke(2008).
The transformed Kalman gain matrix is built on the forecast error
covariance matrix C̃n

f approximated by the covariance of x̃ f ;i
n

� �
i=1:N

.

The inverse transformation to the physical space is done by using
the inverse of the anamorphosis function:

∀i = 1 : N; xa;i
n = ψ−1

n ð x̃n
a;iÞ: ð5Þ

The analyzed mean xa
n and the covariance matrix Ca

n are approx-
imated by the ensemble average and covariance of xa;i

n

� �
i=1:N

.

2.2. Strategies to design a monovariate anamorphosis function

The performances of the non-Gaussian extensions of the DEnKF
described above are strongly dependent on the choice of the
anamorphosis functions ψn and χn. One solution is to use analytic
functions like the logarithm. However, this requires prior knowledge of
the distribution of variables. Another solution is to construct the
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