Contents lists available at ScienceDirect

Applied Catalysis B: Environmental

journal homepage: www.elsevier.com/locate/apcatb

N₂O decomposition over CuO/CeO₂ catalyst: New insights into reaction mechanism and inhibiting action of H₂O and NO by *operando* techniques

Maxim Zabilskiy^a, Petar Djinović^a, Elena Tchernychova^b, Albin Pintar^{a,*}

^a Laboratory for Environmental Sciences and Engineering, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
^b Laboratory for Materials Chemistry, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia

ARTICLE INFO

Article history: Received 27 November 2015 Received in revised form 4 February 2016 Accepted 8 February 2016 Available online 11 February 2016

Keywords: N₂O decomposition CuO/CeO₂ nanorods catalyst Operando DR UV-vis In situ DRIFTS Reaction mechanism

ABSTRACT

In this work, a combination of *ex situ* (STEM-EELS, STEM-EDX, H₂-TPR and XPS), *in situ* (CO-DRIFTS) and *operando* (DR UV–vis and DRIFTS) approaches was used to probe the active sites and determine the mechanism of N₂O decomposition over highly active 4 wt.% Cu/CeO₂ catalyst. In addition, reaction pathways of catalyst deactivation in the presence of NO and H₂O were identified. The results of *operando* DR UV–vis spectroscopic tests suggest that $[Cu-O-Cu]^{2+}$ sites play a crucial role in catalytic N₂O decomposition pathway. Due to exposure of {100} and {110} high-energy surface planes, nanorod-shaped CeO₂ support simultaneously exhibits enhancement of CuO/CeO₂ redox properties through the presence of Ce³⁺/Ce⁴⁺ redox pair. Its dominant role of binuclear Cu⁺ site regeneration through the recombination and desorption of molecular oxygen is accompanied by its minor active participation in direct N₂O decomposition. NO and H₂O have completely different inhibiting action on the N₂O decomposition reaction. Water molecules strongly and dissociatively bind to oxygen vacancy sites of CeO₂ and block further oxygen transfer as well as regeneration of catalyst active sites. On the other hand, the effect of NO is expressed through competitive oxidation to NO₂, which consumes labile oxygen from CeO₂ and decelerates [Cu⁺ Cu⁺] active site regeneration.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nitrous oxide (N₂O) is due to its high global warming potential, atmospheric stability (lifetime approximately 120 years) and contribution to ozone layer depletion considered to be one of the strongest greenhouse gases [1,2]. The total anthropogenic emissions of nitrous oxide (including nitric acid, adipic acid and caprolactam production) are estimated to be about $5.3 \text{ Tg N}_2\text{O}-\text{N yr}^{-1}$ (teragrams of N₂O in equivalent nitrogen units per year) [3]. Thus, development of an efficient technology for catalytic N₂O decomposition from industrial exhaust gases is highly required. Different catalyst formulations (involving supported noble metals [4–6], metal oxides [7,8], mixed metal oxides [9,10], perovskites [11,12], spinels [13–15] and zeolite based materials [16–19]) have been studied in order to decompose N₂O to environmentally benign O₂ and N₂. Despite many scientific efforts, development of a proper catalyst which could decompose N₂O even

http://dx.doi.org/10.1016/j.apcatb.2016.02.024 0926-3373/© 2016 Elsevier B.V. All rights reserved. in the presence of inhibiting gases (*e.g.*, water, oxygen and NO) is still of great importance.

Among investigated catalytic systems, CuO/CeO₂ materials show very promising results and combine superior activity under moderate temperatures, long-term stability and economically favourable price (compared to highly expensive noble metals) [10,20-23]. It was previously discovered that CuO clusters measuring less than 5 nm in size exhibit the highest activity and achieve 50% of N₂O conversion at around 380 °C (N₂O concentration = 2500 ppm; WHSV = $60 L/(g_{cat} h)$) [21]. Exceptional catalytic properties of CuO/CeO2 system have been attributed to the so-called "synergetic effect". This originates from electronic interactions between the two oxide phases, which weakens the metal-oxygen bond and enables easier oxygen desorption and regeneration of catalyst active sites [24,25]. It was observed that nanoshaped CeO₂ (rods and cubes), predominantly terminated with $\{100\}$ and $\{110\}$ surface planes and enriched with Ce³⁺ showed superior activity in N₂O decomposition reaction compared to polycrystalline CeO₂ nanoparticles, terminated with $\{111\}$ surface planes with lower Ce3+ content [20]. This leads to an assumption that CeO₂ acts not only as a support material for CuO,

^{*} Corresponding author. E-mail address: albin.pintar@ki.si (A. Pintar).

but also plays an active role (through Ce³⁺/Ce⁴⁺ redox pair) in N₂O decomposition pathway. Systematic fundamental research which would help to identify reaction steps occurring on the catalyst surface during N₂O decomposition, is required in order to establish a credible mechanism for catalytic N₂O decomposition over CuO/CeO₂ solids. Furthermore, the inhibiting action of H₂O and NO, which are usually present in tail gases subjected to N₂O decomposition, is not completely clear.

As a result, understanding of N₂O decomposition mechanism and deactivation by H₂O and NO will allow catalyst improvement for efficient N₂O destruction. Therefore, this study was aimed to fulfil this missing knowledge gap. For this purpose, a catalyst containing 4 wt.% of Cu supported on CeO₂ nanorods was thoroughly characterized by a variety of techniques (HRTEM, STEM-HAADF, STEM-EDX, N₂ physisorption, XRD, H₂-TPR, XPS and dissociative N₂O adsorption) and examined in catalytic N₂O decomposition. *Operando* DRIFT and UV-vis techniques hyphenated with gas chromatography were used to investigate the mechanism of N₂O decomposition over CuO/CeO₂ as well as inhibiting action of H₂O and NO on the catalyst. By bringing together results obtained from these surface sensitive techniques, comprehensive information about the reaction under consideration was obtained and mechanism of catalytic N₂O decomposition was proposed.

2. Experimental

2.1. Catalyst preparation

Catalyst containing 4 wt.% of Cu supported on CeO₂ nanorods (CuO/CeO₂) was prepared accordingly to the following synthesis protocol: Nanoshaped CeO₂ support was synthesized by hydrothermal method. Briefly, 53.8g of NaOH (99% purity, Merck) was dissolved in 140 mL of deionized water. To the obtained solution, 4.9 g of Ce(NO₃)₃·6H₂O (99% purity, Sigma-Aldrich) dissolved in 84 mL of deionized water was added under vigorous stirring. Then, suspension was stirred for 30 min and transferred into a Teflon[®]lined stainless steel autoclave and aged for 24 h at 100 °C. The derived suspensions were centrifuged at 5000 rpm and thoroughly washed with hot deionized water in order to remove undesired sodium ions. The obtained precipitate was re-dispersed in 10 mL of deionized water, frozen by quench-freezing with LN₂ and dried for 24h using a freeze-dryer (Christ, model Alpha 1-2 LDplus). Finally, the material was calcined in air at 400 °C for 3 h (heating ramp of 2°C/min). CuO was deposited by means of precipitation. 400 mg of CeO₂ nanorods was dispersed in 10 mL of deionized water using an ultrasonic homogenizer (Cole-Parmer) and 63.6 mg of Cu(NO₃)₂·3H₂O(99.5% purity, Sigma-Aldrich) was added to reach the 4 wt.% nominal loading. After 10 min of stirring, 5 mL of aqueous solution containing 250 mg of Na₂CO₃ (99.999% purity, Merck) was added. The obtained suspension was additionally stirred at room temperature for 2 h, filtered, thoroughly washed with hot deionized water, dried in the freeze drier for 24 h and finally calcined in air at 400 °C for 3 h (heating ramp of 2 °C/min).

2.2. Catalyst characterization

Measurements of BET specific surface area, total pore volume and pore size distribution were performed at -196 °C using a TriStar II 3020 instrument from Micromeritics. Temperature programmed reduction (H₂-TPR) experiments were performed using a Micromeritics AutoChem II 2920 apparatus. Before analysis, a catalyst was pre-treated at 400 °C in synthetic air (20.5 vol.% O₂/N₂). TPR analysis was performed in a 25 mL/min stream of 5 vol.% H₂/Ar mixture as a reducing agent. The samples were heated from -20 to 400 °C with a 5 °C/min ramp during analysis. A liquid nitrogen-isopropyl alcohol cold trap was mounted on exhaust in order to condense water vapour and remove it from the effluent gas mixture before entering the TCD detector. After H₂-TPR examination, dissociative N2O adsorption experiment was done in order to determine Cu dispersion and cluster size. N₂O pulsing (10 vol.% N_2O/He) was performed at 35 °C (a LN₂ cold trap was mounted on exhaust in order to condense unreacted N₂O). X-ray photoelectron spectra were measured with ES-2403 modified spectrometer equipped with a PHOIBOS 100 MCD analyzer (Specs GmbH), using MgKα excitation (1253.6 eV, 10 kV and 25 mA). The spectrometer was calibrated by binding energy (BE) of Au $4f_{7/2}$ = 84.0 eV and Ni $2p_{3/2}$ = 852.7 eV. Detailed spectra were recorded for the regions of Cu 2p, Ce 3d photoelectrons and Cu L3VV Auger electrons with a 0.1 eV step at a pressure below 3×10^{-6} Pa. The binding energy of XPS peaks was further corrected by referencing to the Ce $3d_{5/2}$ peak at 882.0 eV (internal standards). Particle size and morphology were studied by means of high-resolution transmission electron microscopy (HRTEM) and scanning TEM high-angle annular dark field imaging (STEM-HAADF). Copper distribution was assessed by energy-dispersive X-ray spectroscopy in STEM mode (STEM-EDX). For these analyses, a probe aberration-corrected JEM-ARM200CF equipped with the JEOL Centurio 100 mm² EDXS detector and JEOL STEM detectors (JEOL, Tokyo, Japan) was employed.

2.3. In situ and operando experiments

All experiments were carried out at ambient pressure. Prior to catalytic runs, the CuO/CeO₂ catalyst was activated *in situ* in 20 mL/min Ar flow (purity 5.0, Messer) at 400 °C for 1 h. Decomposition of N₂O was performed in reaction chambers (see details below) in the temperature range of 300–450 °C. N₂O feed concentration was 2500 ppm balanced by argon (Linde), while the total feed flow rate was equal to 30 mL/min. At each examined temperature (increments of 50 °C) the reaction was carried out for 30 min before measurements were initiated. For catalytic experiments conducted in the inhibiting atmospheres, gas mixtures containing 2500 ppm of N₂O and either 1.5 vol.% of H₂O or NO balanced by argon were used.

The operando diffuse reflectance Fourier transform infrared (DRIFT) spectra were recorded in the range of 900–4000 cm⁻¹ using a FTIR analyzer (Perkin Elmer, model Frontier) equipped with a MCT detector. High temperature reaction chamber (Pike Technologies, model DiffusIR) was used in order to monitor the catalyst surface under reaction conditions. Experiments were conducted using 10 mg of CuO/CeO₂ sample placed into a sample holder made from sintered ceramics (5 mm I.D.) and finely smoothed to create a flat surface. Spectra were collected with the resolution of 4 cm⁻¹ and accumulation of 32 scans. The analysis of outlet gas was performed by means of a hyphenated gas chromatograph 490 Micro GC (Agilent Technologies) equipped with 10 m MS5A and 10 m Porabond Q columns. In situ spectra of adsorbed CO were recorded at -70 °C. The catalyst was pre-treated in situ either in inert gas (He) or in 2500 ppm N₂O/Ar atmospheres at 400 °C. After cooling to -70 °C, the solid was exposed to 1 vol.% CO/Ar mixture. Spectra were collected with the resolution of 4 cm⁻¹ and accumulation of 16 scans.

The operando UV-vis diffuse reflectance spectra (DR UV-vis) were acquired using a Perkin-Elmer Lambda 650 UV-vis spectrophotometer equipped with a high-temperature reaction chamber (HVC-VUV-4, Harrick). The Spectralon[®] white reflectance standard or CuO/CeO₂ catalyst were utilized to perform the instrument background correction in the range of 200–850 nm. The scans were acquired with the speed of 120 nm min⁻¹ and slit set to 4 nm. 10 mg of CuO/CeO₂ catalyst was placed into a stainless steel sample holder (4.5 mm I.D.) inside the reaction chamber. N₂O conversion

Download English Version:

https://daneshyari.com/en/article/45506

Download Persian Version:

https://daneshyari.com/article/45506

Daneshyari.com