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a b s t r a c t 

A Bayesian hierarchical framework is used to model extreme sea states, incorporating a latent spatial 

process to more effectively capture the spatial variation of the extremes. The model is applied to a 34- 

year hindcast of significant wave height off the west coast of Ireland. The generalised Pareto distribution 

is fitted to declustered peaks over a threshold given by the 99.8th percentile of the data. Return levels of 

significant wave height are computed and compared against those from a model based on the commonly- 

used maximum likelihood inference method. The Bayesian spatial model produces smoother maps of 

return levels. Furthermore, this approach greatly reduces the uncertainty in the estimates, thus providing 

information on extremes which is more useful for practical applications. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

A detailed knowledge of the extreme sea states affecting a re- 

gion is essential for any marine activity. For shipping, offshore and 

coastal installations, or the deployment of devices such as wave 

energy converters, it is crucial to have accurate information on 

the extremes likely to be encountered during operational lifetimes. 

These are typically expressed in terms of return levels and pe- 

riods; for example, the level of significant wave height which is 

likely to occur on average once every 100 years. Extreme value 

theory provides statistical tools for such an analysis ( Coles, 2001 ) 

and the methods have been widely applied in studies of ocean 

waves; reviews may be found in Vanem (2011) and Jonathan and 

Ewans (2013) . The background theory for this extreme value anal- 

ysis is outlined in Section 2 below. 

Models of extremes are often fitted to data-sets using a maxi- 

mum likelihood approach. Although straightforward to implement, 

this can lead to large uncertainties in the parameter estimations 

and subsequent return levels ( Vanem, 2015 ). Obviously, we wish 

to reduce the levels of uncertainty and obtain meaningful results 

which are of practical use. Bayesian inference allows for a more de- 
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tailed analysis of this uncertainty, by providing complete probabil- 

ity distributions for the parameters given the data ( Gelman et al., 

2013 ). 

Our aim in this paper is to use Bayesian techniques to model 

the spatial variability of ocean wave extremes. We follow the ap- 

proach of Cooley et al. (2007) , who include a latent spatial process 

within a Bayesian hierarchical framework to capture the spatial de- 

pendence of precipitation extremes. This is described in detail in 

Section 3 . Such a model has been applied to the study of tempera- 

ture extremes in the ocean by Oliver et al. (2014) but not to ocean 

wave data, to the best of the authors’ knowledge. 

We apply the statistical model to significant wave height data 

off the west coast of Ireland, obtained from a spectral wave model 

hindcast. Recently, O’Brien et al. (2013) provided a history of ex- 

treme wave events around Ireland, revealing an often severe en- 

vironment. On the other hand, the seas off the west coast of Ire- 

land have attracted interest due to their potential wave energy re- 

sources ( Gallagher et al., 2016 ) and so an accurate description of 

the likely extremes is of both theoretical and practical relevance. 

A description of the domain and data under study, along with 

model implementation details, is given in Section 4 . The results 

are presented in Section 5 with a discussion and conclusions in 

Section 6 . 
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2. Extreme value analysis 

2.1. Background theory 

There are a number of possible approaches to extreme value 

analysis. An introduction to the field may be found in Coles (2001) . 

One fundamental method is the block maxima approach. We con- 

sider a sequence of independent and identically-distributed ran- 

dom variables, Z 1 , Z 2 , . . . , and let M n = max ( Z 1 , . . . , Z n ) be the 

maximum over a block of n values; for example, we may take M n 

to be the annual maxima in a multi-year set of significant wave 

height data. The extremal types theorem states that, under certain 

regularity conditions, the distribution function of the M n will con- 

verge to a specific three-parameter form, known as the generalised 

extreme value (GEV) distribution. 

A major disadvantage to this approach is the fact that, by using 

only the maxima from a given block size, we are discarding a lot of 

data. In this work we consider a data-set of hourly significant wave 

height, H s . Modelling with, for example, annual maxima would be 

quite wasteful. An alternative is to model the excesses over a given 

threshold ( Pickands, 1975 ). We assume that our sequence of inde- 

pendent random variables, Z 1 , Z 2 , . . . , satisfies the extremal types 

theorem described above. For large enough threshold u , the dis- 

tribution function of the exceedances Y = Z − u, conditional on Z 

> u , is approximately given by the generalised Pareto distribution 

(GPD) 

F (y ) = 1 −
(

1 + 

ξy 

σ

)−1 /ξ

(1) 

defined on the set { y : y > 0 and (1 + ξy/σ ) > 0 } . Here, ξ and σ
are known as the shape and scale parameters, respectively, and 

have ranges −∞ < ξ < ∞ and σ > 0. For the limiting value when 

ξ = 0 , we get the exponential distribution 

F (y ) = 1 − exp 

(
− y 

σ

)
These two methods of extreme value analysis have been ap- 

plied extensively to ocean wave data from different sources. Ex- 

amples of GEV models include Mendéndez et al. (2009) , who 

use monthly maxima of H s from observational buoy data, and 

Izaguirre et al. (2011) , in which monthly maxima are obtained 

from satellite altimeter missions. Threshold exceedance models 

of H s with the GPD may be found in Caires and Sterl (2005) ; 

Vinoth and Young (2011) and Nicolae Lerma et al. (2015) . In 

addition, a number of papers have compared the various ap- 

proaches; see, for example, Caires (2011) ; Vinoth and Young (2011) ; 

Aarnes et al. (2012) ; Vanem (2015) and Clancy et al. (2015) . 

Once we have the parameters of a distribution, we may com- 

pute the N -year return levels. For the GPD in (1) , we have 

P (Z > z| Z > u ) = 

(
1 + 

ξ (z − u ) 

σ

)−1 /ξ

. (2) 

We write ζu = P (Z > u ) and can then find the return level z m 

, the 

level which is exceeded on average once every m observations, by 

solving 

P (Z > z m 

) = ζu 

(
1 + 

ξ (z m 

− u ) 

σ

)−1 /ξ

= 

1 

m 

. 

Letting m = N n y , where n y is the number of observations per year, 

we arrive at the following expression for the N -year return level: 

z N = u + 

σ

ξ

[
(Nn y ζu ) 

ξ − 1 

]
(3) 

For the case of the exponential distribution with ξ = 0 , we have 

z N = u + σ log ( Nn y ζu ) 

2.2. Model fitting 

Given a set of data, we may fit one of the models described 

above. The maximum likelihood (ML) estimation method is com- 

monly used. We can consider a set of n independent values, 

z 1 , . . . , z n , to which we wish to fit a probability density function 

f ( z ; θ ), where θ is a parameter of the distribution. The likelihood 

function is given by 

L (θ ) = f (z| θ ) = 

n ∏ 

i =1 

f (z i ; θ ) 

The maximum likelihood estimator ˆ θ is found by maximising the 

above likelihood function or, more usually, the logarithm of L ( θ ). 

Asymptotic properties of the ML estimate, which assume Gaussian 

behaviour, may then be used to compute confidence intervals. Fur- 

thermore, the so-called delta method provides confidence intervals 

for quantities derived from the parameter estimates; for example, 

the return levels in (3) . Details of these are given in Coles (2001) , 

along with a discussion of other methods for fitting and analysing 

uncertainty, such as the profile likelihood method. 

A further alternative is to use Bayesian inference for parameter 

estimation ( Gelman et al., 2013 ). Continuing the above example, 

we use Bayes’ Theorem to write 

f (θ | z) ∝ f (z| θ ) f (θ ) (4) 

Thus, we arrive at a posterior distribution, f ( θ | z ), from a com- 

bination of the likelihood of the data and a given prior distribu- 

tion f ( θ ). Whereas the ML method gives a point estimate of a pa- 

rameter, with the Bayesian approach the parameter is described by 

a complete distribution. This allows us to characterise the uncer- 

tainty in a natural way. Rather than appealing to asymptotic theory 

for confidence intervals, we may use, for example, the percentiles 

of the posterior distribution. 

A detailed treatment of Bayesian methods may be found in 

Gelman et al. (2013) . Coles (2001) provides a brief introduc- 

tion to their use in extreme value analysis while Coles et al. 

(2003) further discuss their benefits over likelihood-based in- 

ference in modelling extremes. In the context of ocean wave 

modelling, Egozcue et al. (2005) and Scotto and Guedes 

Soares (2007) were among the first to apply a Bayesian approach; 

see Vanem (2011) for a review of various models of ocean ex- 

tremes. The review of Jonathan and Ewans (2013) points to the 

growing use of Bayesian methods and their potential for ocean en- 

gineering applications. 

Practical implementation of Bayesian inference can be compu- 

tationally intensive, in particular the calculation of the propor- 

tionality constants in (4) . The development of the Markov chain 

Monte Carlo (MCMC) technique has been hugely successful in 

making these methods viable. This algorithm may be used to 

draw simulated samples from the desired posterior distributions 

( Geyer, 2011 ). 

2.3. Spatial modelling of extremes 

A number of authors have examined the spatial variation of ex- 

treme sea states, rather than focussing on one particular location. 

Fedele (2012) , for example, considered space-time extremes of in- 

dividual crest heights over a spatial region. 

For studies involving extreme value modelling of significant 

wave height, the global or regional data-sets used have come from 

satellites ( Vinoth and Young, 2011; Izaguirre et al., 2011 ) or model 

hindcasts and reanalyses ( Caires and Sterl, 2005; Cañellas et al., 

2007; Aarnes et al., 2012; Guo and Sheng, 2015 ). This extreme 

value analysis has been carried out at each individual point on 

some given spatial grid. However, this approach does not explic- 
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