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a b s t r a c t 

This study presents a continuum approach using a diffusion approximation method to solve the scattering 

of ocean waves by randomly distributed ice floes. In order to model both strong and weak scattering, 

the proposed method decomposes the wave action density function into two parts: the transmitted part 

and the scattered part. For a given wave direction, the transmitted part of the wave action density is 

defined as the part of wave action density in the same direction before the scattering; and the scattered 

part is a first order Fourier series approximation for the directional spreading caused by scattering. An 

additional approximation is also adopted for simplification, in which the net directional redistribution 

of wave action by a single scatterer is assumed to be the reflected wave action of a normally incident 

wave into a semi-infinite ice cover. Other required input includes the mean shear modulus, diameter 

and thickness of ice floes, and the ice concentration. The directional spreading of wave energy from the 

diffusion approximation is found to be in reasonable agreement with the previous solution using the 

Boltzmann equation. The diffusion model provides an alternative method to implement wave scattering 

into an operational wave model. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Propagation of ocean waves into an ice cover is one of many 

wave phenomena in nature. It shares the same basic conceptual 

model as in acoustic, elastic, and electromagnetic wave propaga- 

tion in complex media. The study of ocean waves in ice covered 

condition has a long history (e.g. Greenhill, 1886 ). Contemporary 

studies of this topic have been accelerating due to the rapid de- 

cline of ice in the Arctic ( Comiso et al., 2008 ) and intensified wave 

activities ( Thomson and Rogers, 2014 ). These conditions combined 

with increased shipping and environmental concerns call for better 

models of ocean waves in various ice covers. 

As a material, ice covers are extremely inhomogeneous. Their 

physical properties change dynamically in response to both ther- 

mal and mechanical forcing. When ocean waves enter an ice cover, 

two things may happen: its speed may change and its energy may 

be reduced/redirected. Two fundamental processes affect the en- 

ergy: the intrinsic and the scattering attenuation. The first results 

in net energy loss due to various dissipative processes, many of 

which have been considered in different models. The second is a 

reduction of energy in the original wave direction through scat- 
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tering. The total energy is not affected but only redistributed into 

other directions. The present study addresses the scattering part of 

wave propagation. 

Scattering is the directional redistribution from the original 

wave direction ( Ishimaru, 1978 ). Studies at the scatterer scale are 

the foundation for the macro-scale models, which determine the 

energy propagation through a large collection of scatterers over a 

long distance. For instance, Ryzhik et al. (1996) gave the formula- 

tion of a general transport equation for wave propagation in ran- 

dom media including both the intrinsic and scattering attenuation. 

These attenuations from a single scatterer determine the coeffi- 

cients used in the transport equation. Examples were provided in 

acoustic, electromagnetic, and elastic waves. Numerous references 

can be found in each of these fields as listed in their study. 

For ocean waves under ice covers, the scattering process has 

also been developed from the scatterer scale to the macro-scale. 

At the scatterer scale, detailed study was conducted for 2-D wave 

transmission and reflection between open water and ice covers, 

between ice covers of different properties, where the ice cover 

was assumed semi-infinite or finite in extent, and for 3-D cases 

where the ice was circular or arbitrary in shape (reviewed in 

Squire, 2011 ). These studies provided the reflection from a sin- 

gle ice boundary in the 2-D case (e.g. Fox and Squire, 1990 ), and 

the scattering distribution from a single ice floe in the 3-D case 
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(e.g. Meylan and Squire, 1996 ). Utilizing these results, wave prop- 

agation through an array of ice floes in 2-D and 3-D cases, with 

uniform or non-uniform floe sizes and various ice properties have 

been studied ( Doble and Bidlot, 2013; Dumont et al, 2011; Mas- 

son and LeBlond, 1989; Meylan and Masson, 2006; Meylan et al., 

1997; Montiel et al., 2016; Perrie and Hu, 1996, 1997; Peter et al., 

2004; Williams et al., 2013a, 2013b ). The goal of these studies is to 

incorporate the scattering process in an operational ocean model. 

There are two approaches used in solving the wave scattering 

through a large array of ice floes. One assumes the independence 

of phase interactions, so that the wave fields generated may be su- 

perimposed (e.g. Masson and Leblond, 1989; Meylan et al., 1997 ). 

The other solves the multiple-floe domain as a coupled hydroelas- 

tic problem with each floe-water interface as part of the complex 

boundary ( Bennetts and Squire, 2009; Montiel et al., 2016 ). In the 

present study, we propose a different approach from these two. 

The proposed method is based on a modified diffusion approxi- 

mation used in other wave propagation fields. This method is not 

as accurate as the two approaches mentioned above, but it pro- 

vides an alternative method which may be easier to incorporate in 

operational ocean models that need to treat a large variety of ice 

covers. 

2. The theoretical formulation 

In this section, we derive the governing equations for wave 

scatterings with a diffusion approximation. The advantage of such 

approximation is to avoid calculating the complex integral ker- 

nel in the integral-differential equation of the wave action den- 

sity function. The diffusion approximation is commonly used in 

the radiative transfer problem in a random medium ( Ryzhik 

et al., 1996 ). However, the existing diffusion approximations used 

in various fields with random scatterers all assume strong scatter- 

ing, such that the distance over which a single direction wave ray 

becomes isotropic is short compared with other length scales in a 

field of scatterers. This assumption allows previous diffusion mod- 

els to focus on the isotropic part of the wave action density func- 

tion. 

For gravity waves propagating in a field of discrete ice floes, 

such assumption does not apply well to long waves. We thus 

propose here a different approach. The general philosophy of 

this approach is to start with a two-term decomposition for the 

wave action density function: the transmitted part and the scat- 

tered part. The transmitted part attenuates its energy through 

scatterings. The scattered part gains the energy from the trans- 

mitted part and gradually becomes more isotropic. We apply 

the diffusion approximation for the scattered part to obtain 

three differential equations. Details of the derivation are given 

below. 

The wave action balance equation of ocean waves is 

∂ 

∂t 
N( x , t, k ) + ∇ · [ c g N(x , t, k ) ] = 

S(x , t, k ) 

ω 

. (1) 

Here, N = E / ω is the wave action density function ( Andrews and 

Mcintyre, 1978 ), in which E is the wave energy density per unit 

area of angular frequency ω, k is the wave number vector, x is 

the spatial coordinate, t is time, c g is the group velocity vector, 

and S is the total source/sink term. In addition to scattering, the 

source/sink may include processes such as wind generation, wave 

breaking, and nonlinear transfer between different frequencies. In 

the presence of an ice cover, these source/sink terms are not well 

established. If we ignore all other processes and focus on the scat- 

tering process alone, then along each wave component k the above 

equation becomes the following Boltzmann equation ( Meylan et al., 

1997 ). 

∂ 

∂t 
N(x , t, k, θ ) + c g θ · ∇N(x , t, k, θ ) 

= −c g αs (x , t, k, θ ) N(x , t, k, θ ) 

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) N (x , t, k, θ ′ ) dθ ′ . (2) 

Here, αs is the scattering attenuation coefficient, θ indicates the 

direction of wave number vector k , k = | k |, and S k is the kernel 

function of wave energy redistribution. The scattering kernel S k 
represents wave energy in the θ ’ direction that is redirected into 

the θ direction ( Meylan et al., 1997 ). There has been a consider- 

able amount of study based on thin-elastic-plate theory to derive 

S k (e.g. Meylan and Squire, 1996; Meylan et al., 1997 ; and Bennetts 

and Williams, 2010 ), which we referred to as the “scatterer scale”

studies. The energy conservation condition leads to 

αs (x , t, k, θ ) = 

∫ 2 π

0 

S k (x , t, k, θ ′ , θ ) dθ ′ . (3) 

Thus, the redistribution of energy is exactly the loss of energy 

in the given wave direction. 

We now propose a decomposition of N, which is more effective 

in following both weak and strong scattering processes. The wave 

action density function N defined in Eq. (1) is linearly decomposed 

into two parts, 

N(x , t, k, θ ) = A (x , t, k, θ ) + B (x , t, k, θ ) . (4) 

We define A ( x , t , k , θ ) as the transmitted part in the direction 

of N ( x , t , k , θ ), and B ( x , t , k , θ ) is the scattered part. In this de- 

composition, the amount of the “incident” wave N that remains in 

the same direction after scattering is isolated from the rest of scat- 

tering energy. In this way, we can better treat weakly scattering 

waves before they become completely isotropic. Furthermore, the 

evolution of waves from open water, a no scattering region, into 

an ice field, a scattering region, may also be followed more closely 

near the boundary between the two regions. Masson and LeBlond 

(1989) applied a similar decomposition. The governing equations 

for these two parts are as the following, 

∂ 

∂t 
A (x , t, k, θ ) + c g θ ·∇A (x , t, k, θ ) = −c g αs (x , t, k, θ ) A (x , t, k, θ ) , 

(5) 

∂ 

∂t 
B (x , t, k, θ ) + c g θ · ∇B (x , t, k, θ ) = −c g αs (x , t, k, θ ) B (x , t, k, θ ) 

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) B (x , t, k, θ ′ ) dθ ′ 

+ c g 

∫ 2 π

0 

S k (x , t, k, θ, θ ′ ) A (x , t, k, θ ′ ) dθ ′ . (6) 

Eq. (5) says energy transmitted in the “incident” wave direc- 

tion is reduced exactly by the amount of loss from the scattering 

process. Eq. (6) says the scattered energy is increased by contri- 

butions of the total redistribution from the scattered part and the 

“incident” part. The governing equation for A is straightforward. To 

simplify the integral-differential equation for B , we adopt a diffu- 

sion approximation. 

To use the diffusion approximation, we decompose B into a di- 

rectional averaged part and a fluctuating part as the following, 

B (x , t, k, θ ) = B̄ (x , t, k ) + B 

′ (x , t, k, θ ) + · · · , (7) 

where 

B̄ (x , t, k ) = 

1 

2 π

∫ 2 π

0 

B (x , t, k, θ ) dθ. (8) 
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