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a b s t r a c t 

A two-layer model with uniform non-hydrostatic pressure in the bottom produces favorable dispersion 

properties for coastal wave transformation at the computational requirements of a one-layer model. We 

derive the nonlinear governing equations and the corresponding dispersion relation, shoaling gradient, 

and super- and sub-harmonics to understand the theoretical performance of this reduced model. With 

the layer interface near the bottom, the dispersion relation shows an extended applicable range into 

deeper water at the expense of a slight overestimation of the celerity in intermediate water depth. The 

shoaling gradient rapidly converges to the exact solution in the shallow and intermediate depth range. 

These complementary characteristics allow identification of an optimal interface position for both linear 

wave properties. The resulting model exhibits good nonlinear performance in shallow and intermediate 

water depth and produces super- and sub-harmonics comparable to a two-layer model. Numerical tests 

involving standing waves show the reduced model has smaller discretization errors in the dispersion re- 

lation comparing to a one-layer model. Case studies of regular wave transformation over a submerged bar 

and a uniform slope provide comparison with laboratory data and demonstrate the linear and nonlinear 

properties derived from the governing equations. The good shoaling and nonlinear properties give rise to 

accurate waveforms in both cases, while dispersion errors from the governing equations and numerical 

schemes accumulate over time leading to phase shifts of the modeled waves. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Ocean surface waves in the nearshore region drive a series of 

physical processes that shape the shoreline and impact the coastal 

community. Numerical modeling provides a cost-effective way to 

study these processes for coastal hazard assessment and engineer- 

ing design. Among the various models, the non-hydrostatic ap- 

proach has gained increasing attention from the research and engi- 

neering communities because of its favorable linear and nonlinear 

wave properties, robustness of the numerical scheme, and scala- 

bility with a finite number of layers to achieve desirable accuracy. 

The rapid convergence of the primary properties such as wave dis- 

persion and flow kinematics demonstrates its capabilities for mod- 

eling of broad-spectrum ocean waves in practical applications ( Bai 

and Cheung, 2015 ). 

The methodology has undergone rapid development since 

Casulli (1995) introduced a non-hydrostatic pressure component 

in the Navier-Stokes equations for modeling of free-surface flow. 

The fractional step method of Casulli and Stelling (1998) solves 
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the problem with a semi-implicit scheme and determines the non- 

hydrostatic pressure from a Poisson equation. Stelling and Zijlema 

(2003) proposed a Keller-box scheme with a boundary-fitted coor- 

dinate system to improve convergence of the dispersion relation. 

The use of conserved variables through layer-averaging can de- 

scribe discontinuous flows involving hydraulic jumps or bores. The 

non-hydrostatic pressure in the resulting multi-layer model follows 

a piecewise linear distribution. Zijlema and Stelling (2005) utilized 

a pressure correction technique in a vertical boundary-fitted coor- 

dinate system to accurately compute the non-hydrostatic pressure 

field. Zijlema et al. (2011) implemented the approach with turbu- 

lence dissipation for modeling of coastal wave processes. Bai and 

Cheung (2013b) transformed the governing equations of a multi- 

layer model into a depth-integrated system, which enhances nu- 

merical stability under strong advection. The new system allows 

derivation of the dispersion relation and super- and sub-harmonics, 

which in turn provide an effective way to optimize the model per- 

formance through adjustment of the interface positions. 

One-layer non-hydrostatic models are computationally efficient 

but cannot accurately resolve wave dispersion, especially in deep 

water. Two-layer models are able to cover an extended range of 

water-depth parameters crucial for describing coastal wave and 
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surf-zone processes. Adjustment of the interface position allows 

tuning of the model for a specific range of depth parameters. Nev- 

ertheless, the pressure Poisson equation remains the most compu- 

tationally intensive part in the solution. Parameterization of the 

non-hydrostatic pressure profile can reduce computational costs, 

while retaining fundamental wave properties for practical appli- 

cation. Bai and Cheung (2013a) introduced a parameterized two- 

layer model with a prescribed ratio of the interface and bottom 

non-hydrostatic pressure. This allows elimination of the interface 

non-hydrostatic pressure from the Poisson equation and reduces 

the computational requirements to those of a one-layer model. An 

interface position at the mid flow depth gives rise to an optimal 

solution in terms of dispersion, shoaling, and nonlinear proper- 

ties for the two-layer model ( Bai and Cheung, 2012 ). Optimization 

of the pressure ratio yields a dispersion relation equivalent to a 

[2, 2] Pad ́e approximation as with the Boussinesq model of Nwogu 

(1993) . 

The efficiency and scalability of the parameterized two-layer 

model enable studies of coastal wave processes and flood haz- 

ards on a regional scale. By adjusting both the interface position 

and pressure ratio, Cui et al. (2014) identified promising dispersion 

properties for nearshore wave transformation with a uniform pres- 

sure distribution in the bottom layer. A minor error exists in their 

dispersion relation, but does not affect its optimization through the 

interface position (see Appendix A ). We provide an in-depth study 

of this unique pressure distribution through the nonlinear govern- 

ing equations of the parameterized two-layer model and examine 

its optimization and performance in terms of the water depth pa- 

rameter. In addition to the theoretical dispersion, we investigate 

effects of spatial discretization on the model celerity and derive 

the shoaling gradient and super- and sub-harmonics from the gov- 

erning equations for comparison with the exact solutions from Airy 

and Stokes wave theories. A selection of numerical experiments in- 

volving wave dispersion, shoaling, and nonlinearity allows evalua- 

tion of the model capability in relation to conventional one- and 

two-layer models as well as laboratory data. 

2. Governing equations 

The properties of the parameterized two-layer system depend 

on the constructs of the governing equations that need elaboration 

and examination. We begin with layer-integration of the continu- 

ity and Euler equations and then convert the nonlinear governing 

equations into a depth-integrated system. Introduction of the in- 

terface position and pressure ratio as free parameters allows op- 

timization of linear and nonlinear properties. The selection of the 

evolution valuable for the pressure profile is discussed and its in- 

fluence on the non-hydrostatic character of the model is investi- 

gated. 

2.1. Layer-integrated system 

Consider a free-surface flow in a two-dimensional Cartesian co- 

ordinate system ( x, z ) as shown in Fig. 1 . The surface elevation ζ , 

which is measured from the still-water level at z = 0 , evolves with 

time t . The water depth is denoted by d and the flow depth by 

h = ζ + d. We utilize the dispersion and nonlinear parameters μ
and ε, which denote the depth to wavelength and amplitude to 

depth ratios, to nondimensionalize the continuity and Euler equa- 

tions as 
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where ( u, w ) and q denote the velocity and non-hydrostatic pres- 

sure ( Bai and Cheung, 2013b ). The kinematic boundary conditions 

at the free surface and seabed become 

w ζ = 

∂ζ

∂t 
+ εu ζ

∂ζ

∂x 
z = εζ (4) 

w d = −u d 

∂d 

∂x 
z = −d (5) 

where u ζ and u d denote the horizontal velocity evaluated at the 

free surface and bottom respectively. The dynamic boundary con- 

dition defines the non-hydrostatic pressure q ζ = 0 at the free sur- 

face. 

The flow depth is now defined as h = εζ + d after nondimen- 

sionalization. The flow consists of two layers with the bottom and 

top thickness defined by h 1 = αh and h 2 = (1 − α) h through an ad- 

justable parameter α ∈ [ 0, 1 ]. The position of the layer interface 

can be expressed in terms of the bottom layer thickness h 1 , the 

top layer thickness h 2 , or the surface elevation ζ as 

z α = h 1 − d 

= εζ − h 2 

= αεζ − (1 − α) d (6) 

The governing equations for the two-layer flow can be derived 

from the continuity and Euler equations (1) –(3) . Integration of the 

continuity equation (1) over the two layers in conjunction of the 

Leibniz rule yields 

∂h 1 u 1 
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− u z α

∂z α

∂x 
+ w z α = 0 (7) 

∂h 2 u 2 

∂x 
− εu ζ

∂ζ

∂x 
+ u z α

∂z α

∂x 
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where u 1 and u 2 represent the averaged horizontal velocity in the 

bottom and top layers and ( u z α , w z α ) denotes the velocity evalu- 

ated at the interface z α . The horizontal component is expressed as 

the average from the two layers as u z α = ( u 1 + u 2 ) / 2 . The vertical 

component w z α should be distinguished from the vertical velocity 

of the interface. Their difference is defined by 

�w z α = w z α −
(

1 

ε
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∂t 
+ u z α

∂z α
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)
(9) 

In obtaining the continuity equations (7) and (8) , we approximate 

the kinematic boundary conditions (4) and (5) as 

w ζ = 

∂ζ

∂t 
+ εu 2 

∂ζ

∂x 
z = εζ (10) 

w d = −u 1 
∂d 

∂x 
z = −d (11) 

which utilize the layer-averaged horizontal velocity components 

instead of those at the free surface and the bottom to compute 

the vertical velocity. 

Integration of the horizontal momentum equation (2) defines 

the flux and force balance in the bottom and top layers. After 
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