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a b s t r a c t 

This paper focuses on an alternative approach of lateral turbulent dispersion, proposed by Benoit 

Cushman-Roisin in 2008, that is based on a linear increase of the width of dispersing patches in a field 

of isotropic horizontal turbulence. In the open ocean, this Richardson-like dispersion regime is a well- 

observed feature on sub-mesoscale length scales from 10 to 100 km. In this work, we successfully vali- 

date and calibrate the new diffusion scheme using Lagrangian particles and Eulerian tracer in turbulent 

velocity fields simulated with the shallow-water equations. In discretized form, the new diffusion scheme 

exclusively relies on specification of a turbulent velocity scale that, unlike the turbulent diffusivity of Fick- 

ian approaches, is well defined through statistical properties of the turbulent flow. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Diffusion is a fundamental physical process that modifies dis- 

tributions of a property under the influence of molecular or tur- 

bulent velocity fluctuations. The accurate description of turbulent 

diffusion is important for many different scientific fields of study 

ranging from smaller-scale industrial engineering applications, pol- 

lutant dispersal (e.g. oil spills) modelling, the atmospheric sci- 

ences including weather forecasting, oceanography, the climate sci- 

ences including climate predictions, to studies of the magneto- 

hydrodynamics of the Earth’s core. While this work focusses on 

turbulent diffusion in the ocean, its outcomes are also relevant to 

other disciplines. 

The uncertainty inherent with the parameterization of sub-grid- 

scale processes, i.e. diffusion, in general circulation models (GCMs) 

of the ocean has been partially overcome over the last decades 

through advances in computer technology which made it possible 

to develop eddy-resolving hydrodynamic models (e.g. Semtner and 

Chervin, 1992 ). While such models are still restricted to simulation 

timescales of a few years in shallow shelf seas to decades in deep- 

sea applications, for efficiency reasons the ocean modules of cli- 

mate forecasting models are still often based on a coarser grid res- 

olution of 1 o (such as climate models used for the 4th IPCC report) 

and thus particularly rely on the accuracy of turbulence closure 

models and their representation of diffusion. The accurate descrip- 

tion of horizontal diffusion in eddy-resolving GCMs is similarly 

important as this modifies property distributions on unresolved 

lengths scales which, indeed, influence the resolved dynamics. 
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Horizontal diffusion in turbulent fluids is generally derived from 

Fick’s laws of diffusion ( Fick, 1855; Einstein, 1905 ), but with the 

use of an enlarged value of the constant of proportionality, D , 

called “eddy diffusivity” (e.g. Thorpe, 2007; Olbers et al., 2012 ). Un- 

der the assumption of a constant D , the related parabolic diffusion 

equation reads: 

∂C 

∂t 
= D 

(
∂ 2 C 

∂ x 2 
+ 

∂ 2 C 

∂ y 2 

)
(1) 

where C is the concentration of an Eulerian tracer, t is time, and 

x and y are horizontal Cartesian coordinates. When assuming con- 

stant eddy diffusivity, however, Fickian diffusion predicts that the 

length scale of a spreading patch, � , increases with the square root 

of time ( Cushman-Roisin, 2008 ); that is, 

� 2 = 2 Dt (2) 

where � 2 is called “relative dispersion” ( LaCasce, 2008; Koszalka 

et al., 2009 ). It has been argued for a long time, however, that 

the size of a dispersing patch in turbulent regime ought to grow 

faster than the square root of time ( Batchelor and Townsend, 1956; 

Gifford, 1957 ), known as “super-diffusion”, noting that Stommel 

(1949) concluded that the Fickian model fails to describe horizon- 

tal diffusion in the sea. 

Observations in both water (e.g. Lawrence et al., 1995; Clark et 

al., 1996; Peeters and Hofmann, 2015 ) and air (e.g. Min et al., 2002 ) 

reveal patch sizes that grow roughly linearly with time. To repro- 

duce this feature with the Fickian model, D in ( 2 ) has to be taken 

proportional to � . This length-scale dependence of D is consistent 

with observational evidence ( Fig. 1 ) derived from the dispersion of 

drifter clusters, where D is called “apparent” or “effective” diffusiv- 

ity (e.g. Richardson, 1926; List et al., 1990 ). Consequently, the Fick- 

ian approach leads to a paradox situation in which it is impossible 
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Fig. 1. Apparent diffusivity, D , vs. scale of diffusion, � , for the central dye releases 

at Twin West Lake together with the data of Okubo (1974) and Murthy (1976). The 

line of best fit is given by D = 3.2 ×10 −4 � 1.1 (from Lawrence et al., 1995 ). 

to tell which value of D to assign when two dispersing patches of 

different sizes merge. 

The fact that Fickian diffusion does not perform well in de- 

scribing the observed diffusive spreading is well known and 

documented. Super-diffusion appears to dominate the diffusive 

behaviour over many length scales under consideration. Super- 

diffusion occurs in the atmosphere (e.g., Richardson, 1926; Cush- 

man et al., 2005 ), in geologic porous media ( Cushman et al., 1994, 

Deng and Cushman, 1995, Meerschaert et al., 2001 ), lakes (e.g., 

Lawrence et al., 1995 ), vortex arrays in rotating flow ( Weeks and 

Swinney, 1998 ), layered velocity fields ( Zumofen et al., 1991 ), and 

eddy regimes of western boundary currents ( Berti et al., 2011 ) to 

name a few examples. There is vast literature on the subject, the 

topic being carefully explored by the plasma community, which 

presents it as part of a more general problem (e.g., Isichenko, 1992 ; 

and references therein). 

Different dispersion regimes have been identified in the open 

ocean. Based on 93 drifter pairs in the Nordic Seas that were ini- 

tially separated less than 2 km from each other, Koszalka et al. 

(2009) concluded that relative dispersion in the open ocean ex- 

hibits three phases. The initial phase occurred during the first two 

days, at spatial scales less than 10 km, where dispersion increased 

approximately exponentially, � 2 ∼exp( t ), with an e-folding time of 

roughly half a day. This exponential behaviour on small scales can 

be attributed to nonlocal stirring dominated by larger-scale eddies 

( Lin, 1972; Bennett, 1984; Babiano et al., 1990; LaCasce, 2008 ). 

During the second, intermediate phase, from 2 to roughly 10 

days and scales of 10 to roughly 100 km, the dispersion increased 

over time as a power law, � 2 ∼t R , with an exponent of about 3 

( Koszalka et al., 2009 ), known as Richardson law or Richardson–

Obukhov law ( Richardson, 1926; Obukhov, 1941; Cushman-Roisin, 

2008 ). Note that the Richardson relation also corresponds to the 

case of an eddy diffusivity proportional to the 4 / 3 power of the 

length scale ( Richardson and Stommel, 1948; Obukhov, 1941 ). Due 

to large uncertainties in the determination of eddy diffusivity 

from drifters (e.g. Klocker et al., 2012 ), this 4/3 power relation 

is generally statistically not distinguishable from a linear relation- 

ship, noting that a few years after Richardson’s initial publication, 

Richardson and Gaunt (1930) revised the exponent downward by 

suggesting that the eddy diffusivity ought instead to grow as the 

first power of the patch size. Similarly, the analysis of 140 drifter 

pairs of the SCULP program in the Gulf of Mexico ( Ohlmann and 

Niiler, 2005 ) revealed dispersion as � 2 ∼t R with an exponent of 2.2 

rather than 3 (see Fig. 22b in LaCasce, 2008 ), which is close to lin- 

ear spreading. 

At larger spatial ( > 100 km) and temporal ( > 2–3 weeks) scales, 

dispersion tends to increase linearly in time, � 2 ∼t , and pair veloci- 

ties are uncorrelated ( Koszalka et al., 2009; LaCasce, 2008; LaCasce 

et al., 2014 ), which is consistent with diffusive spreading accord- 

ing to ( 2 ). Hence, it appears that Fick’s diffusion law applies only 

to oceanic processes on spatial scales > 100 km. This may justify 

the use of Fickian diffusion in non-eddy resolving climate mod- 

els. In contrast, the intermediate oceanic regime on lengthscales 

of up 100 km appears to be controlled by super-diffusion. Hence, 

the use of the Fickian diffusion schemes on those lengthscales in 

eddy-resolving ocean GCMs is inconsistent with the observational 

evidence. 

For clarity, it should be noted that stirring in the Richardson 

regime is still nonlocal in the sense that the tracer is partially 

stirred by eddies larger than the patch size, whereas in the Fickian 

regime the patch size outgrows the size of eddies so the stirring 

becomes local. 

Cushman-Roisin (2008) proposed an alternative diffusion law 

that is based on the ensemble-average of the solution of the ad- 

vection equation and the use of a probability density distribution 

for turbulent velocity fluctuations. Cushman-Roisin (2008) also 

demonstrates for the one-dimensional example that the new ap- 

proach replicates a linear spreading of dispersing patches. For 

two-dimensional applications, this law is given by the integro- 

differential equation ( Cushman-Roisin, 2013 ): 

∂C(x, y, t) 

∂t 
= A 

〈
u 

′ 〉 ∫ ∫ C 
(
x ′ , y ′ , t 

)
− C ( x, y, t ) [

( x − x ′ ) 2 + ( y − y ′ ) 2 
]3 / 2 

d x ′ d y ′ (3) 

where A is an (unknown) numerical constant, and 〈 u ′ 〉 is a tur- 

bulent velocity scale. Furthermore, Cushman-Roisin and Jenkins 

(2006) show for one-dimensional momentum diffusion that the 

new diffusion operator conserves the total content of a property 

and that it dissipates the second moment (variance) of the prop- 

erty’s distribution over time. It should also be highlighted that the 

discretized version of ( 3 ) can be written as an expansion series 

whereby each term is of the same form as the classical explicit 

Fickian scheme (see Section 3.2 ). Hence, the discretized version of 

( 3 ) has the same general numerical characteristics as the Fickian 

scheme, except that includes more surrounding grid cells in the 

calculation. 

The objective of this work is to validate and calibrate ( 3 ) on the 

basis of the analysis of the dispersion of both Lagrangian particles 

and Eulerian tracer in high-resolution hydrodynamic model appli- 

cations that create fields of statistically well-defined turbulent ve- 

locity fluctuations. 

2. Materials and methods 

2.1. Description of hydrodynamic model 

A simple shallow-water equation model ( Kämpf, 2009 ) is ap- 

plied to create a field of isotropic horizontal turbulence. To this 
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