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a b s t r a c t 

A new set of Boussinesq equations is derived to study the nonlinear interactions between long waves in 

a two-layer fluid. The fluid layers are assumed to be homogeneous, inviscid, incompressible, and immis- 

cible. Based on the Boussinesq equations, an analytical model is developed using a second-order pertur- 

bation theory and applied to examine the transient evolution of a resonant triad composed of a surface 

wave and two oblique subharmonic internal waves. Wave damping due to weak viscosity in both layers 

is considered. The Boussinesq equations and the analytical model are verified. In contrast to previous 

studies which focus on short internal waves, we examine long waves and investigate some previously 

unexplored characteristics of this class of triad interaction. In viscous fluids, surface wave amplitudes 

must be larger than a threshold to overcome viscous damping and trigger internal waves. The depen- 

dency of this critical amplitude as well as the growth and damping rates of internal waves on important 

parameters in a two-fluid system, namely the directional angle of the internal waves, depth, density, and 

viscosity ratio of the fluid layers, and surface wave amplitude and frequency is investigated. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The ocean is density-stratified due to vertical gradients in salin- 

ity, temperature, and sediment concentration. Stratification sup- 

ports the generation of internal waves which are the main drivers 

of deep ocean mixing ( Munk and Wunsch, 1998 ). Furthermore, ob- 

servations in coastal waters indicate that breaking internal waves 

over a water-mud interface can result in increased water turbid- 

ity ( Trowbridge and Traykovski, 2015 ). Internal waves have been 

studied widely in the past few decades, but many aspects of their 

generation, evolution and eventual dissipation still require further 

investigation (e.g. Garrett and Kunze (2007) ; Lamb (2014) ). 

The dynamics of wave processes in a stratified ocean can be il- 

luminated by studying a fluid with a two-layer density structure. 

Koop and Butler (1981) showed that models based on Korteweg- 

de Vries (KdV) equations for weakly nonlinear long internal waves 

compare fairly well against experimental measurements where 

both fluid layers are shallow. KdV models are limited in that only 

unidirectional waves are treated. This limitation was removed in 

more recent models of Choi and Camassa (1996) and Lynett and 

Liu (2002) for weakly nonlinear and weakly dispersive waves, and 

in the fully nonlinear models of Choi and Camassa (1999) and 
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Ostrovsky and Grue (2003) . Debsarma et al. (2010) improved the 

( Choi and Camassa, 1999 ) model by including higher-order disper- 

sive terms. The aforementioned models (except Choi and Camassa, 

1996 ) impose rigid lid condition along the upper boundary, thus 

cannot capture surface-internal wave interactions. However, it is 

well-established that the coupling between surface and internal 

waves can modulate ocean wave spectra significantly (e.g. Watson 

et al. (1976) ; Olbers and Herterich (1979) ; Dysthe and Das (1981) ; 

Craig et al. (2011) ). 

One mechanism of internal wave generation is energy transfer 

from the surface to the interface through nonlinear interactions. 

Three classes of resonant generation of internal waves have been 

identified. Ball (1964) showed that an internal wave can grow due 

to energy transfer from two opposite-travelling surface waves in 

shallow water (class I). Segur (1980) noted the mathematical pos- 

sibility of a triad formed by the interaction between a surface wave 

and two opposite-travelling oblique subharmonic internal waves 

(class II). This triad was studied experimentally by Foda and Huang 

(1994) ; Hill and Foda (1996) ; 1998 ); Jamali et al. (2003a ), and re- 

cently by Fazeli et al. (2015) . Furthermore, analytical studies were 

carried out to investigate the importance of different parameters in 

the two-fluid system on the growth of internal waves through this 

mechanism ( Wen, 1995; Hill and Foda, 1996; Jamali et al., 2003a, 

b ). These studies used a second-order perturbation theory to de- 

rive temporal evolution equations for the amplitude of the inter- 

acting waves. Hill (2004) applied a third-order theory and showed 
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Fig. 1. (a) Definition sketch. (b) Direction of propagation of internal waves (1 and 2) and surface wave (3) in the horizontal plane. 

that cubic nonlinear terms act to reduce internal wave growth 

rates, thus second-order theory overestimates their ultimate ampli- 

tudes. His study assumed a lower layer of infinite depth. Recently, 

Tahvildari and Jamali (2012) extended Hill’s work to layers of ar- 

bitrary depth and added the effect of weak viscosity in the lower 

layer on internal wave growth. Alam (2012) showed that surface- 

internal wave coupling is possible in a co-propagating wave triad 

consisting of two relatively short surface waves and one internal 

wave with a much longer wavelength (class III). 

In this study, we investigate the class II of resonant inter- 

action with focus on long waves, in contrast to previous stud- 

ies which mainly focused on short internal waves. A new set of 

two-layer Boussinesq equations is derived to study weakly nonlin- 

ear and weakly dispersive waves. This system extends the weakly 

dispersive limit of the Choi and Camassa (1996) equations to 

mildly varying bathymetry. Similar to the approach of Hill and 

Foda (1996) and Jamali et al. (2003a ), a second-order perturbation 

method is applied to derive an analytical model for nonlinear inter- 

actions between one surface wave and two oblique internal waves. 

The analytical model is verified with the model of Jamali (1998) in 

the limit of shallow layers. The interaction coefficients are more 

straightforward to calculate compared to those in models based on 

the fully dispersive formulation (e.g. Jamali (1998) ). The effect of 

weak viscosity in both fluid layers is added to the analytical model. 

While strong viscosity stratification can intensify interfacial distur- 

bances ( Harang et al., 2014 ), weak viscosity acts to inhibit interfa- 

cial wave growth ( Davis and Acrivos, 1967 ). Jamali et al. (2003a ) 

followed the approach of Davis and Acrivos (1967) and considered 

the effect of weak viscosity by adding a damping term to the evo- 

lution equations of wave amplitudes. Jamali et al. (2003a ) use a 

damping coefficient that assumes identical viscosities in the fluid 

layers whereas we employ the formulation of Hill (2002) that ac- 

counts for varying viscosities and show that accounting for viscos- 

ity stratification is crucial in predicting internal wave growth. The 

analytical model is applied to investigate the effect of surface wave 

frequency and amplitude, and of the depth, density, and viscosity 

ratio of the fluid layers on the initial growth and damping rate of 

internal waves. As viscosity suppresses interfacial oscillations, the 

surface wave amplitude must exceed a critical value to overcome 

the damping effects and trigger internal waves. We use the analyt- 

ical model to examine the effect of the aforementioned parameters 

on this critical amplitude. 

The remainder of the paper is organized as follows. 

Section 2 summarizes the derivation of the two-layer Boussinesq 

equations. Section 3 outlines the development of an analytical 

model for surface-internal wave interactions using a perturba- 

tion approach. In Section 4 , the dependency of the growth and 

damping rate of the internal waves and the critical surface wave 

amplitude on the important parameters in the system is examined. 

Conclusions and discussion are presented in Section 5 . 

2. Formulation 

Fig. 1 (a) illustrates the configuration of the problem. The Carte- 

sian coordinate system is introduced with origin at the undis- 

turbed interface with the z -axis positive upward. The two-layer 

fluid is assumed to be laterally unbounded corresponding to an 

open ocean. The upper layer has density ρ ′ and depth h , and 

the lower layer has density ρ and spatially varying depth d ( x, y ) 

(primed quantities refer to the upper layer). The total water depth 

is denoted by H . The free surface and the interface displacements 

are denoted by η( x, y ) and ξ ( x, y ), respectively. The fluid layers are 

assumed inviscid, incompressible, homogeneous, immiscible, and 

the flow is assumed irrotational. Therefore, velocity potential func- 

tions, φ′ and φ, can be introduced. 

Mathematically, an infinite number of internal wave pairs can 

be in resonant interaction with a given surface wave. Each pair 

is characterized by its directional angle θ in the xy plane, where 

θ = 0 corresponds to the surface wave direction and is measured 

positive counterclockwise. Previous theoretical and experimental 

studies (e.g. Hill and Foda (1996) ; Jamali et al. (2003a )) show 

that among all possible internal wave pairs, the one that includes 

identical counter-propagating waves that are subharmonic to the 

surface wave (with half the frequency of the surface wave) has 

the highest likelihood of occurrence. This wave triad is shown in 

Fig. 1 (b) and will be the focus of our study. 

2.1. Governing equations 

The approach we take to deriving the Boussinesq equations is to 

start from the boundary value problem for potential flow. The in- 

ternal kinematics in each layer are governed by the Laplace equa- 

tion and scaled in a manner consistent with weakly dispersive 

waves in shallow water (e.g. see Mei et al. (2005) ). The following 

dimensionless variables are introduced: 

( ̃  x , ̃  y ) = k c (x, y ) , ˜ z = 

z 

H c 
, ˜ t = k c 

√ 

gH c t, ( ̃  ξ , ˜ η) = 

(ξ , η) 

A 

, 

( ̃  d , ̃  h ) = 

(d, h ) 

H c 
, ˜ φ = φ

k c 

ε
√ 

gH c 

, ˜ k = 

k 

k c 
, (1) 

where the overtildes denote dimensionless quantities, A is a typical 

surface wave amplitude, k c is a characteristic internal wavenumber, 
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