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a b s t r a c t 

A new numerical model based on the Navier–Stokes equations is presented for the simulation of dis- 

persion dominated waves. The equations are solved by splitting the pressure into hydrostatic and non- 

hydrostatic components. The Godunov approach is utilized to solve the hydrostatic flow equations and 

the resulting velocity field is then corrected to be divergence free. Alternative techniques for the time 

integration of the non-hydrostatic pressure gradients are presented and investigated in order to improve 

the accuracy of dispersion dominated wave simulations. Numerical predictions are compared with ana- 

lytical solutions and experimental data for test cases involving standing, shoaling, refracting, and breaking 

waves. 

Published by Elsevier Ltd. 

1. Introduction 

Numerical models that solve the Navier–Stokes equations and 

track the free surface location using the Volume-of-Fluid (VOF) 

method Hirt and Nichols (1981) have successfully simulated near 

shore wave transformation including breaking ( Lin and Liu, 1998; 

Bradford, 20 0 0 ). In this approach, the free surface is tracked by 

monitoring the movement of water in and out of stationary com- 

putational cells, which allows for the simulation of arbitrary air- 

water interfaces. However, these models are computationally in- 

tensive and yield solutions that are often more detailed than nec- 

essary for many applications. 

An alternative group of models track the free surface by utiliz- 

ing the depth integrated incompressibility constraint ( Stansby and 

Zhou, 1998; Lin and Li, 2002; Stelling and Zijlema, 2003; Bradford, 

2005; Ma et al., 2012 ) or the kinematic free surface boundary con- 

dition ( Li and Fleming, 20 01; Li, 20 08 ). These models typically em- 

ploy a vertical grid transformation using bottom and free surface 

tracking coordinates. This approach requires fewer computational 

cells in the vertical direction than the VOF-based models, which 

allows for larger scale simulations of coastal wave transformation. 

However, the ability to simulate the curling over of a wave crest 

or fluid detachment due to splashing or plunging is lost. Despite 

this limitation, Bradford (2011) demonstrated that this approach 

can accurately simulate important aspects of the surf zone includ- 

ing wave height transformation and undertow. 
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Waves with relatively short lengths and traveling in relatively 

deep water are typically dominated by frequency dispersion. Accu- 

rate simulation of such waves requires greater vertical grid reso- 

lution than is required for the accurate simulation of long waves 

in shallow water. This is particularly true for models that employ a 

fractional step or projection approach in which the non-hydrostatic 

pressure is integrated in time with a first order accurate method 

such as the model presented in Bradford (2011) . In this study, two 

techniques for improving the accuracy of the model presented in 

Bradford (2011) when simulating dispersion dominated waves are 

proposed and evaluated. Model predictions are compared with an- 

alytical solutions and experimental data. 

2. Governing equations 

The model is based on the incompressible, Reynolds averaged, 

Navier–Stokes equations in which the pressure is split into hy- 

drostatic and non-hydrostatic components. Lateral diffusion terms 

have also been neglected. The governing equations are transformed 

vertically from z space to σ space via the following transformation 

( Phillips, 1957 ), 

σ = 

z − h 

D 

(1) 

where h is the free surface elevation and D is the total water depth. 

Furthermore, the equations are transformed from x and y space 

via a curvilinear transformation to ξ and η space such that the grid 

size in each of the ξ and η directions is one. In this coordinate 
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system, the momentum equations are 
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where U = (Du D v Dw ) T , A is the projected area of a compu- 

tational cell in x − y space, ν is the eddy viscosity. Note that lat- 

eral diffusion has been neglected because it has been found that 

these terms have no significant impact on predictions of the sur- 

face elevation and undertow in breaking and non-breaking waves 

( Bradford, 2011; Ma et al., 2012 ). The fluxes are 
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where 

U = (uξx + v ξy ) A 

V = (uηx + v ηy ) A 

W = D (σt + uσx + v σy ) + w (4) 

ξ x , ξ y , ηx , and ηy denote the lateral (time invariant) grid transfor- 

mation metrics. The terms σ t , σ x , and σ y are the time-varying grid 

transformation metrics. 

The source terms are defined as 
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The variable z b denotes the bottom elevation and p is the kine- 

matic pressure. 

The incompressibility constraint is 
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Eq. (7) is vertically integrated to yield 
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where U and U denote the depth averaged velocities defined as 
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−1 
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Vd σ (9) 

The primitive, inviscid form of the momentum equations are 

also used and are written as 
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Fig. 1. Sketch of a computational cell. 
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The primitive form of Eq. (8) is 
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The Mellor–Yamada 2.5 level turbulence model ( Mellor and Ya- 

mada, 1982; Galperin et al., 1988 ) is used to compute ν . This tur- 

bulence closure model yielded results similar to those obtained 

with the Renormalized Group turbulence closure model coupled 

with a Volume of Fluid based Navier–Stokes free surface flow 

model ( Bradford, 2011 ). 

3. Numerical solution 

The finite volume approach is used to discretize Eqs. (2) and 

(8) . The domain is divided into cube-shaped computational cells 

indexed with j, k, l and all dependent variables are defined as cell 

average values. ξ is in the direction of contiguous j indices, while 

η and σ are in the directions of k and l indices, respectively, as 

shown in Fig. 1 . 

Eq. (8) is solved for D as 
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where the superscript n + 1 denotes the new time level, n the 

previous time level, n + 1 / 2 is the predictor time level, and �t 

is the time step. The depth-averaged fluxes, D U , are computed 

by approximately solving the Riemann problem given by the re- 

constructed flow variables to the left and right of each cell face 

( Roe, 1981 ), which is summarized in Appendix A . 

Eq. (2) are solved for U as 
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where 
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Note that vertical diffusion is integrated in time with the first or- 

der accurate, implicit Euler method. Bradford (2004) found that 

the implicit Euler method coupled with the neglect of diffusion in 

computing the predictor solution ( U 

n +1 / 2 ), yielded the best combi- 

nation of computational efficiency, accuracy, and robustness. 
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