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a b s t r a c t 

Large-scale σ -coordinate ocean circulation models neglect the horizontal variation of σ in the calcu- 

lation of stress terms and boundary conditions. Following this practice, the effects of surface and bot- 

tom slopes in the dynamic surface and bottom boundary conditions have been usually neglected in the 

available non-hydrostatic wave-resolving models using a terrain-following grid. In this paper, we de- 

rive consistent surface and bottom boundary conditions for the normal and tangential stress fields as 

well as a Neumann-type boundary condition for scalar fluxes. Further, we examine the role of surface 

slopes in the predicted near-surface velocity and turbulence fields in surface gravity waves. By com- 

paring the predicted velocity field in a deep-water standing wave in a closed basin, we show that the 

consistent boundary conditions do not generate unphysical vorticity at the free surface, in contrast to 

commonly used, simplified stress boundary conditions developed by ignoring all contributions except 

vertical shear in the transformation of stress terms. In addition, it is shown that the consistent boundary 

conditions significantly improve predicted wave shape, velocity and turbulence fields in regular surf zone 

breaking waves, compared with the simplified case. A more extensive model-data comparison of various 

breaking wave properties in different types of surface breaking waves is presented in companion papers 

(Derakhti et al., 2016a,b). 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Surface wave breaking plays an important role in numerous 

environmental and technical processes such as air-sea interaction, 

acoustic underwater communications, optical properties of the wa- 

ter column, nearshore mixing and coastal morphodynamics. Wave 

breaking is a highly dissipative process, limiting the maximum 

height of surface waves. It is also a source of turbulence, enhanc- 

ing transport and mixing in the ocean surface layer ( Banner and 

Peregrine, 1993; Melville, 1996; Duncan, 2001; Perlin et al., 2013 ). 

Although large-eddy simulations (LES) combined with the 

volume-of-fluid (VOF) method for free-surface tracking ( Watanabe 

et al., 2005; Derakhti and Kirby, 2014; 2016 ) can resolve turbu- 

lence and mean flow dynamics in breaking waves quite well, they 

are computationally expensive even for laboratory-scale events. A 

lower-resolution framework is needed to study long-term, O(days), 

and large-scale, O(100 m ∼ 10 km ) , wave-breaking-driven circula- 

tion as well as transport of sediment, bubbles, and other sus- 

pended materials. Computationally efficient Boussinesq-type mod- 

els (e.g., Wei et al., 1995; Shi et al., 2012 ) can often yield accept- 
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able predictions of surface elevations and depth-averaged currents 

in the nearshore region. Such single layer models, however, can- 

not provide the vertical structure of mean flow or information on 

instantaneous motion over rapidly-varying bathymetry or current 

fields, and thus recourse must be made to models which either 

provide estimates of vertical structures through closure hypothe- 

ses ( Kim et al., 2009 ) or which utilize a three-dimensional (3D) 

framework from the outset. 

During the past two decades, several multi-layered wave- 

resolving non-hydrostatic models based on Reynolds-averaged 

Navier–Stokes (RANS) equations, such as Stansby and Zhou (1998) , 

Lin and Li (2002) , Bradford (2011) and Ma et al. (2012) , have 

been developed for coastal applications using surface- and terrain- 

following curvilinear ( x, y, σ ) coordinates, hereafter referred as the 

σ -coordinate system. In comparison with VOF-based models, a di- 

rect simplification of this new framework is achieved by assuming 

the free surface to be a single-valued function of horizontal loca- 

tion. By using a σ -coordinate system, the free surface is always 

located at an upper computational boundary, determined by apply- 

ing free-surface boundary conditions. Using a Keller-box scheme, a 

pressure boundary condition at the free surface can thus be accu- 

rately prescribed, and dispersion characteristics of short waves are 

typically predicted accurately using a few vertical σ -levels. 
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However, the effects of surface and bottom slopes in the dy- 

namic boundary conditions at the top and bottom interfaces, e.g., 

the continuity of the tangential surface stress, have been ignored 

in most of the previous non-hydrostatic studies using a terrain- 

following grid, following the previous practice in large-scale ocean 

circulation models. In the absence of surface wind stress, the sim- 

plified tangential stress boundary condition at the free surface de- 

veloped by ignoring all contributions except vertical shear in the 

transformation of tangential stress, reads as ( Lin and Li (2002 , 

equation 41), Bradford (2011 , equation 22) and Ma et al. (2012 , 

equation 36)) 

∂ u i 

∂z 
= 

1 

D 

∂ u i 

∂σ
= 0 , (1) 

where i = 1 , 2 and u i is the horizontal velocity component in the i 

direction. In intermediate and deep water, we have 

ω y = 

∂u 

∂z 
− ∂w 

∂x 
= 

u 0 

L 0 

(
∂ u 

′ 
∂ z ′ −

∂ w 

′ 
∂ x ′ 

)
∼ εc 0 

L 0 
∼ ε f 0 (2) 

where ω y is the vorticity component in the y direction, L 0 and u 0 
are the length and velocity scales respectively, for both the hori- 

zontal and vertical directions. Here, c 0 and f 0 are the wave’s phase 

speed and frequency respectively, ε = a 0 /L 0 is the wave steepness, 

and a 0 is the wave amplitude. Thus, imposing (1) generates error 

in wave vorticity divided by wave frequency to O(ε) , the order of 

the motion itself. In other words, imposing (1) at the free surface 

acts as an unphysical local source of vorticity of strength ∂ w / ∂ x 
which in turn generates an unphysical near-surface residual circu- 

lation. 

In breaking waves, the surface slopes are large, O(1) , and 

∂ u i / ∂ σ � = 0 in a bore-like region, and thus using (1) provides a 

poor estimation of the associated near-surface velocity gradient 

and turbulence production. Another simplification in some of the 

existing non-hydrostatic RANS models using the σ -coordinate sys- 

tem is the neglect of the effects of surface and bottom slopes in 

the horizontal diffusion terms ( Stansby and Zhou, 1998 ). 

Our goals here are (1) to derive consistent surface and bottom 

dynamic boundary conditions for the normal and tangential stress 

fields and (2) to carefully examine the role of surface slopes in 

the predicted near-surface velocity and turbulence fields in sur- 

face gravity waves. We compare the velocity field in a deep-water 

standing wave in a closed basin predicted by the new version of 

the non-hydrostatic model NHWAVE with that predicted by a pre- 

vious version of the model ( Ma et al., 2012 ) (hereafter referred to 

as the original model), showing that the consistent boundary con- 

ditions do not generate unphysical vorticity at the free surface, in 

contrast to commonly used, simplified stress boundary conditions 

developed by ignoring all contributions except vertical shear in the 

transformation of stress terms. In addition, it is shown that the 

consistent boundary conditions significantly improve the predicted 

wave shape and wave heights as well as velocity and turbulence 

fields in regular surf zone breaking waves, compared with the sim- 

plified case. 

The paper is organized as follows. In Section 2 , we present the 

governing equations, in conservative form, describing a complete 

form of the RANS equations in the σ -coordinate system together 

with various turbulence closure models. In Section 3 , we derive 

the consistent surface and bottom dynamic boundary conditions 

for the velocity and dynamic pressure fields, using the appropriate 

dynamic boundary conditions on normal and tangential stresses at 

the top and bottom interfaces as well as a Neumann-type bound- 

ary condition for scalar fluxes. In Section 4 , we examine the role of 

surface slopes in the near-surface velocity and turbulence fields in 

surface gravity waves. Wave-breaking-induced eddy viscosity and 

its effect on the wave height distribution in the surf zone are dis- 

cussed in Section 5 . Conclusions are given in Section 6 . A more 

extensive model-data comparison of various breaking wave prop- 

erties in different types of surface breaking waves is presented in 

companion papers ( Derakhti et al., 2016a,b ). 

2. Governing equations in conservative form 

Here, the complete and conservative form of the RANS equa- 

tions and the scalar transport equation in the σ -coordinate sys- 

tem are presented. Further, different turbulence models includ- 

ing the standard k − ε ( Rodi, 1980 ) and the renormalization group 

(RNG) approach by Yakhot et al. (1992) , are presented. The surface 

and bottom boundary conditions will be derived in the next sec- 

tion. Details of the numerical method may be found in Ma et al. 

(2012) and Derakhti et al. (2015) . 

2.1. Continuity and momentum equations 

Assuming a uniform density field, the RANS equations in Carte- 

sian coordinates (x ∗
1 
, x ∗

2 
, x ∗

3 
) , where x ∗

1 
= x ∗, x ∗

2 
= y ∗ and x ∗

3 
= z ∗

reads as 

∂ u j 

∂ x ∗
j 

= 0 (3) 

∂ u i 

∂ t ∗
+ 

∂ u i u j 

∂ x ∗
j 

= 

1 

ρ0 

∂S i j 

∂ x ∗
j 

+ g i δi 3 , (4) 

where (i, j) = 1 , 2 , 3 , u is the ensemble-averaged velocity, ρ0 is the 

reference water density, g = (0 , 0 , −g) is the gravitational acceler- 

ation, δ is the Kronecker delta function, S i j = 	i j − τi j is the to- 

tal ensemble-averaged stress tensor, 	ij is the ensemble-averaged 

fluid stress and τ ij is the Reynolds stress. For an incompress- 

ible fluid, the net ensemble-averaged fluid stress, composed of 

the pressure contribution p plus the viscous stress σ ij , is defined 

by 	i j = −pδi j + σi j . In a Newtonian fluid, we may assume that 

σi j = 2 μe i j , where e i j = 1 / 2( ∂u i / ∂x ∗
j 
+ ∂u j / ∂x ∗

i 
) is the strain rate 

tensor and μ is the dynamic viscosity. Although there is no uni- 

versal model for τ ij , even in the case of a single-phase flow, we 

use the common eddy viscosity approach to relate the anisotropic 

part of the Reynolds stress, τ de v 
i j 

, to the rate of strain, e ij as τ de v 
i j 

≡
τi j −

δi j 

3 τkk = −2 ρ0 (νt ) j e i j . Here, ( νt ) j is the turbulent eddy viscos- 

ity in the j direction ( j is not a free index here), obtained from an 

appropriate turbulence model. If grid resolution in the horizontal 

directions is considerably different from that in the vertical direc- 

tion, the horizontal turbulent eddy viscosity (νt ) x = (νt ) y may be 

different from that in the vertical direction ( νt ) z . 

The governing Eqs. (3) and (4) are next transformed into the 

σ -coordinate system (see Fig. 1 ), which is given by 

t = t ∗ x = x ∗ y = y ∗ σ = 

z ∗ + h 

D 

(5) 

where D = h + η is the total water depth, h is the still water depth, 

and η is a free surface elevation. In the case of a multi-valued 

surface, however, the definition of a free surface elevation is ar- 

bitrary, and, we assume η is sufficiently smooth to be considered 

as a single-valued mean air-water interface. 

Each term of (3) and (4) is transformed into the σ -coordinate 

system by multiplying by D and using chain differentiation rule 

as 

D 
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− D x j 
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, (6) 
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