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a b s t r a c t 

Stability and convergence of the modified EVP implementation of the visco-plastic sea ice rheology by 

Bouillon et al., Ocean Modell., 2013, is analyzed on B- and C-grids. It is shown that the implementation 

on a B-grid is less restrictive with respect to stability requirements than on a C-grid. On C-grids conver- 

gence is sensitive to the discretization of the viscosities. We suggest to adaptively vary the parameters 

of pseudotime subcycling of the modified EVP scheme in time and space to satisfy local stability con- 

straints. This new approach generally improves the convergence of the modified EVP scheme and hence 

its numerical efficiency. The performance of the new “adaptive EVP” approach is illustrated in a series of 

experiments with the sea ice component of the MIT general circulation model (MITgcm) that is formu- 

lated on a C-grid. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The viscous-plastic (VP) rheology ( Hibler III, 1979 ), connecting 

sea ice deformation rates with ice stresses, forms the basis of most 

climate sea-ice models. The resulting set of equations of ice dy- 

namics is very stiff and thus calls for the design of efficient so- 

lution methods to avoid the restriction to very small time steps 

in standard explicit methods. Partial linearization allows the stiff

part of the problem to be treated implicitly, but requires itera- 

tive solvers ( Zhang and Hibler, 1997 ). Although this linearization 

lifts the time step restriction, it requires many (Picard) iterations 

to recover the full nonlinear solution. Traditionally only a few Pi- 

card iterations are made and convergence is sacrificed ( Lemieux 

and Tremblay, 2009 ). This motivated the development of fully non- 

linear Jacobian-free Newton-Krylov (JFNK) solvers ( Lemieux et al., 

2010, 2012; Losch et al., 2014 ). They converge faster than previous 

methods but still remain an expensive solution. 

The elastic-viscous-plastic (EVP) method is an alternative to im- 

plicit methods. It relaxes the time step limitation of the explicit 

VP method by introducing an additional (artificial, not physically 

motivated) elastic term to the stress equations. This allows a fully 

explicit time stepping scheme with much larger time steps than 

possible for the VP method ( Hunke and Dukowicz, 1997; Hunke, 
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2001 ), but still requires subcycling within the external time step 

commonly set by the ocean model. The effects of the additional 

elasticity term, however, are reported to lead to noticeable differ- 

ences in the deformation field, and result in solutions with smaller 

viscosities and weaker ice (e.g., Lemieux et al., 2012; Losch et al., 

2010; Losch and Danilov, 2012; Bouillon et al., 2013 ). 

In many cases, these effects are linked to the violation of lo- 

cal stability limits (analogous to the Courant number constraint 

for advection) associated with the explicit time stepping scheme 

of the subcycling process ( Hunke and Dukowicz, 1997; Hunke, 

2001 ). Their most frequent manifestation is grid-scale noise in 

the ice velocity derivatives and hence in ice viscosities, in par- 

ticular, on meshes with fine or variable resolution ( Losch and 

Danilov, 2012 ) (the numerical code may remain stable and sim- 

ulate smooth fields of ice concentration and thickness). In an at- 

tempt to improve the performance of the EVP method, a mod- 

ification of the time-discrete model was proposed by adding an 

inertial time stepping term to the momentum balance ( Lemieux 

et al., 2012 ). This mEVP (modified EVP) method was reformulated 

by Bouillon et al. (2013) as a “pseudotime” iterative scheme. By 

construction, it should lead to solutions that are identical to those 

of the VP method provided the scheme is stable and runs to con- 

vergence. The analysis of mEVP for a simplified one-dimensional 

(1D) case suggests that the stability is defined by a single param- 

eter that depends on the resolution, the time step, the ice viscos- 

ity, and on the relaxation parameters of the pseudotime stepping 

( Bouillon et al., 2013; Kimmritz et al., 2015 ). 
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Although the 1D analysis is expected to be valid at least qualita- 

tively in two dimensions (2D), there are a few aspects that are not 

covered by the 1D analysis: the velocity and stress divergence vec- 

tors are not collinear in 2D; velocities are staggered in space (on 

a C-grid) but are collocated on a B-grid, so that on a C-grid one 

works with normal velocity components rather than the full ve- 

locity vector (as on the B-grid); on C-grids the components of the 

strain rate tensor and the stress components are not collocated. 

These aspects affect the convergence properties of the method. 

Several C-grid implementations have been suggested in literature 

(e.g. Bouillon et al., 2013; Lemieux et al., 2012; Losch et al., 2010 ). 

This work extends the analysis of Kimmritz et al. (2015) by ex- 

ploring the impact of space discretizations on the stability proper- 

ties of the mEVP method. Motivated by this analysis we propose a 

new adaptive EVP implementation (aEVP). In this scheme the pa- 

rameters of the pseudotime stepping are locally adjusted in each 

pseudotime subcycle in order to ensure stability. In simple experi- 

ments we demonstrate that this scheme leads to a significant im- 

provement of the convergence properties. 

The article is organized as follows: In Section 2 we briefly re- 

view the governing equations, the mEVP scheme as formulated in 

Bouillon et al. (2013) and its discretization on B- and C-grids. We 

continue with the stability analysis of the linearized 2D equations 

in Section 3 , and introduce the aEVP method and explore its sta- 

bility properties in Section 5 . In Section 6 , we illustrate our re- 

sults in experiments performed with the sea ice component of an 

ocean general circulation model (MITgcm, see the source code at 

http://mitgcm.org ). Conclusions and outlook are given in Section 6 . 

2. Model description 

The horizontal momentum balance of sea ice is written as 

m (∂ t + f k ×) u = a τ − C d aρo (u − u o ) | u − u o | + F − mg∇H. (1) 

Here m is the ice (plus snow) mass per unit area, f is the Coriolis 

parameter and k the vertical unit vector, a the ice concentration, 

u and u o the ice and ocean velocities, ρo is the ocean water den- 

sity, τ the wind stress, H the sea surface elevation, g the accelera- 

tion due to gravity and F l = ∂ σkl /∂ x k the divergence of the internal 

stress tensor σ kl (with indices k, l denoting x 1 and x 2 directions). 

We follow Bouillon et al. (2013) in writing the VP constitutive law 

as 

σkl (u ) = 

P 

2(� + �min ) 

[ 
( ̇ εd − �) δkl + 

1 

e 2 
(2 ̇ εkl − ˙ εd δkl ) 

] 
, (2) 

with 

˙ εkl = 

1 

2 

( ∂ k u l + ∂ l u k ) , � = 

(
˙ ε2 
d + 

1 

e 2 
˙ ε2 
s 

)1 / 2 

. (3) 

The stress tensor σ( u ) is symmetric, i.e. σ12 (u ) = σ21 (u ) . The term 

˙ εd = ˙ εkk describes the divergence, and ˙ εs = (( ̇ ε11 − ˙ ε22 ) 
2 + 4 ̇ ε2 

12 
) 1 / 2 

is the shear. The parameter e = 2 is the ratio of the major axes of 

the elliptic yield curve. Note that the use of the replacement pres- 

sure, (�/ (� + �min )) P ( Hibler III and Ip, 1995 ) in the formulation 

of the VP constitutive law (2) ensures that the stress state is on 

an elliptic yield curve even when � � �min . The ice strength P is 

parameterized as P = hP ∗e −c ∗(1 −a ) , where h is the mean thickness 

of the grid cell, and the constants P ∗ and c ∗ are set to P ∗ = 27500 

Nm 

−2 and c ∗ = 20 . For future reference we introduce the bulk and 

shear viscosities ζ = 0 . 5 P/ (� + �min ) and η = ζ /e 2 . 

2.1. The mEVP scheme as a pseudotime iterative scheme 

The difficulty in integrating (1) is the stiff character of the 

stress term, which requires prohibitively small time steps in an ex- 

plicit time stepping scheme. The traditional approach is either im- 

plicit ( Zhang and Hibler, 1997 ) where viscosities are estimated at 

the previous nonlinear iteration and several iterations are made, 

or explicit, through the EVP formulation ( Hunke and Dukowicz, 

1997; Hunke and Lipscomb, 2008 ) where adding a pseudo-elastic 

term reduces the time step limitations. A discussion of the conver- 

gence issues can be found, for instance, in Bouillon et al. (2013) ; 

Kimmritz et al. (2015) and is not repeated here. 

The suggestion by Bouillon et al. (2013) is equivalent, up to de- 

tails of treating the Coriolis and the ice-ocean drag terms, to for- 

mulating the mEVP method as 

σ p+1 − σ p = 

1 

α

(
σ(u 

p ) − σ p 
)
, (4) 

u 

p+1 − u 

p = 

1 

β

(
�t 

m 

∇ · σ p+1 + 

�t 

m 

R 

p+1 / 2 + u n − u 

p 
)
. (5) 

In (5) , R sums all the terms in the momentum equation except for 

the rheology and the time derivative, �t is the external time step 

of the sea ice model commonly set by the ocean model, the in- 

dex n labels the time levels of the model time, and the index p 

is that of pseudotime (subcycling step number). The Coriolis term 

in R 

p+1 / 2 is treated implicitly in our B-grid implementation, but 

is explicit on the C-grid, and the ice-ocean stress term is linearly- 

implicit ( C d ρo | u o − u 

p | (u o − u 

p+1 ) ). The term σ( u 

p ) in (4) implies 

that the stresses are estimated by (2) based on the velocity of it- 

eration p , and σp is the variable of the pseudotime iteration. The 

relaxation parameters α and β in (4) and (5) are chosen to sat- 

isfy stability constraints (see Bouillon et al. (2013) ; Kimmritz et al. 

(2015) ). They replace the terms 2 T / �t e and ( β∗/ m )( �t / �t e ), where 

T is the elastic damping time scale and �t e the subcycling time 

step of standard EVP formulation; the parameter β∗ was intro- 

duced in Lemieux et al. (2012) . If (4) and (5) are iterated to con- 

vergence, their left hand sides can be set to zero leaving the VP 

solution 

m 

�t 

(
u n +1 − u n 

)
= ∇ · σ(u n +1 ) + R 

∗, (6) 

with R 

∗ = lim p→∞ 

R 

p+1 / 2 and u n +1 = lim p→∞ 

u 

p . While one may 

introduce a convergence criterion to determine the number of it- 

eration steps, historically, the actual number of pseudotime itera- 

tions N is selected experimentally to ensure the accuracy needed. 

The new velocity u n +1 at time step n + 1 is estimated at the last 

pseudotime step p = N. The initial values for p = 1 are taken from 

the previous time step n . 

2.2. Spatial discretizations 

We consider discretizations on Arakawa B- and C- grids that are 

commonly used in sea-ice models. The positions of variables on 

these grids are depicted in Fig. 1 . Note, that in this section ( i, j ) is 

used as mesh indices. For simplicity we use Cartesian coordinates 

and uniform grids with cell widths �x 1 and �x 2 . The complete 

discretization on general orthogonal curvilinear grids can be found 

in Bouillon et al. (2009) and Losch et al. (2010) . For convenience 

we introduce the notation 

δ1 φi, j = φi, j − φi −1 , j , δ2 φi, j = φi, j − φi, j−1 , 

φi, j 

1 = (φi, j + φi +1 , j ) / 2 , φi, j 

2 = (φi, j + φi, j+1 ) / 2 

for a quantity φ at a cell with index ( i, j ). An expression of the 

form φi, j 

1 , 2 
defines the successive application of both directional 

averaging operators on φ. Note, that the location of the discretized 

derivatives depends on the respective grid arrangement of vari- 

ables. 
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