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a b s t r a c t 

In the existing literature, various forms of governing equations have been proposed to solve the shallow- 

water equations (SWEs). Recently, attention has been dedicated to the so-called “pre-balanced” form, 

because finite-volume schemes that are designed on this basis satisfy the well-balanced property. In this 

study, we theoretically investigate the relationship between numerical schemes devised using approxi- 

mate Riemann solvers in the framework of finite-volume methods for solving the conventional form of 

the SWEs and its “pre-balanced” variant. We find that the numerical schemes for solving these two forms 

of the SWEs turn out to be identical when some widely employed upwind or centered approximate Rie- 

mann solvers are adopted for the numerical flux evaluations, such as the HLL (Harten, Lax, and van Leer), 

HLLC (HLL solver with restoring the contact surface), FORCE (first-order centered), and SLIC (slope limited 

centered) schemes. Some numerical experiments are performed, which verify the validity of the result of 

our theoretical analysis. The theoretical and numerical results suggest that the “pre-balanced” SWEs vari- 

ant is not superior to the conventional one for solving the SWEs using approximate Riemann solvers. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

In regions where the water depth is far less than the horizon- 

tal scale of motion, the shallow-water equations (SWEs) are widely 

employed for the modelling of flow motions (e.g., flood wave prop- 

agation, wave run-ups, wind-induced flow motions), scalar trans- 

port (by coupling the SWEs with a scalar transport equation), and 

sediment transport and the associated morphological processes (by 

coupling the SWEs with sediment transport and bed deformation 

equations). In Fig. 1 , a sketch of the shallow-water system is pre- 

sented. The SWEs, in a conservative vector form, can be written as 

(see, for example, Liang and Borthwick (2009) ) 

∂U 

∂t 
+ 

∂F 

∂x 
+ 

∂G 

∂y 
= S, (1) 

with vectors defined by 

U = 

[ 

z 
q x 
q y 

] 

, F = 

[ 

F c 
F x 
F y 

] 

= 

[ 

q x 
F x 

uq y 

] 

, 
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G = 

[ 

G c 

G x 

G y 

] 

= 

[ 

q y 
v q x 
G y 

] 

, S = S f + S 0 = 

[ 

0 

S f x 

S f y 

] 

+ 

[ 

0 

S 0 x 
S 0 y 

] 

, (2) 

where t denotes time; x and y denote the horizontal Cartesian 

coordinates; z denotes the water surface elevation above a hori- 

zontal reference level z r ; h denotes the water depth; and q x = uh 

and q y = v h denote discharges per unit width, with u and v de- 

noting the depth-averaged velocity components in the x - and y - 

directions, respectively. The terms with subscripts “f ” and “0” de- 

note the bed friction and water surface (or bed elevation) gradi- 

ent related forces, respectively. Throughout this paper, variables in 

a non-bold style with subscripts “c ”, “x ”, and “y ”, respectively, are 

related to the continuity equation and the momentum equations 

in the x - and y -directions, and these variables are the first, second, 

and third components of a vector. The bed friction force may be 

calculated using Manning’s formula, as 

S f x = −gn 

2 q x 
√ 

q 2 x + q 2 y 

h 

7 / 3 
, S f y = −gn 

2 q y 
√ 

q 2 x + q 2 y 

h 

7 / 3 
, (3) 

where n denotes Manning’s roughness coefficient. Note that except 

z , h could also be used as the conserved variable for the continuity 

equation (first components of Eqs. (1) and (2) ). 

Various forms of the SWEs exist in the literature. They mainly 

differ in the expressions of F x and S 0 x in the x -direction and G y 
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Fig. 1. Sketch of a shallow-water system (not to scale). 

and S 0 y in the y -direction in Eq. (2) . For instance, F x and S 0 x are 

commonly written as ( Toro, 2001 ) 

F x = uq x + 

1 

2 

gh 

2 , (4a) 

S 0 x = −gh 

∂z b 
∂x 

, (4b) 

where z b denotes the bed elevation above z r and physically, z b sat- 

isfies the equality 

z = h + z b . (5) 

For the convenience of descriptions to follow, Eqs. (1) and 

(2) with F x and S 0 x as defined by Eq. (4) will be referred to as 

the HH form of the SWEs, or simply SWE-HH, in reference to the 

fact that the expression of F x (and G y ) contains the term h 2 . Other 

forms of the SWEs can be found in the literature, among which the 

so-called “pre-balanced” form proposed by Liang and Borthwick 

(2009) has drawn great attention. Here, a numerical scheme is 

called well-balanced (e.g., satisfy the C-property) if the discretiza- 

tions of the flux gradient and source terms in the momentum 

equations are consistent, such that under a quiescent flow condi- 

tion over a complex bed topography, no spurious flow is predicted 

( Bermudez and Vazquez, 1994 ). Liang and Borthwick (2009) re- 

formulated SWE-HH such that the flux gradient and source terms 

are perfectly balanced when the HLL (Harten, Lax, and van Leer) 

approximate Riemann solver ( Harten et al., 1983 ) is used for the 

numerical flux evaluations. Note that this pre-balanced form of 

the SWEs was derived specifically for Godunov-type finite-volume 

schemes, where the relevant expressions of F x and S 0 x are defined 

as 

F x = uq x + 

g 

2 

z ( z − 2 z b ) , (6a) 

S 0 x = −gz 
∂z b 
∂x 

; (6b) 

the corresponding SWEs will be referred to as the ZZ form of the 

SWEs, or SWE-ZZ, in viewing of the fact that the expression of F x 
(also G y ) contains the term z 2 . 

Since it was first proposed, the ZZ form of the SWEs has be- 

come popular, and has been adopted by many researchers to solve 

the SWEs over a complex topography (see, for example, Kesserwani 

and Liang (2010) ; Huang et al. (2013) ; Vacondio et al. (2014) ; Qian 

et al. (2015) ). The idea of pre-balancing by reformulating the HH 

form of a governing equation system to a ZZ form has been widely 

adopted to process the flux gradient and source terms in some 

other equation systems, in which the flux gradient and source 

terms are the same as those in the SWEs. Such equation sys- 

tems include the Boussinesq-type equations ( Ning et al., 2008 ), 

the Green–Naghdi equations ( Duran and Marche, 2015; Lannes and 

Marche, 2015 ), the SWEs incorporating non-hydrostatic pressure 

effects ( Lu et al., 2015 ), the two-layer (depth-averaged) shallow- 

water equations ( Cao et al., 2015 ), and the 3D Reynolds-averaged 

Navier–Stokes equations in σ coordinates ( Ma et al., 2012 ). 

In viewing of the main objective of employing a ZZ form of gov- 

erning equation systems being to achieve the well-balanced prop- 

erty, and the fact that this property can also be satisfied by numer- 

ical schemes devised based on the conventional HH form (see, for 

example, Zhou et al., (2001) ; Hou et al. (2013) ; Hu et al. (2015) ), 

some questions naturally arise. Is it really necessary to use a pre- 

balanced form of the equation system such as SWE-ZZ instead of 

SWE-HH, and what is the relation between numerical schemes de- 

signed based on different equation system forms? This study aims 

to address these issues. Note that in this study, we focus our at- 

tention on solving the SWEs using finite-volume method (FVM). 

In particular, we focus on state-of-the-art FVM schemes designed 

based on the approximate Riemann solvers. 

The remainder of this paper is organized as follows. 

Section 2 presents the FVM discretizations for the SWEs, and re- 

visits the well-balanced property for solving SWE-ZZ. In Section 3 , 

a theoretical analysis is performed to explore the relation between 

numerical schemes solving the different forms of the SWEs. 

Finally, conclusions and discussions are presented in Section 4 . 

2. The well-balancedness of the HLLC-based numerical scheme 

for solving SWE-ZZ 

In this section, we revisit the well-balanced property of 

SWE-ZZ. In the framework of FVMs, Eq. (1) may be explic- 

itly discretized using the operator-splitting method as ( Liang and 

Borthwick, 2009 ) 

ε = 

[ 

ε c 
ε x 
ε y 

] 

= 

U 

m 

i, j 
− U 

k 
i, j 

�t 

= 

F i −1 / 2 , j − F i +1 / 2 , j 

�x 
+ 

G i, j−1 / 2 − G i, j+1 / 2 

�y 
+ ( S 0 ) i, j , (7a) 

U 

k +1 
i, j 

− U 

m 

i, j 

�t 
= S f (U 

k 
i, j , U 

k +1 
i, j 

) . (7b) 

Here, i and j denote the cell indexes; �t and �x denote the time 

step and space interval, respectively; “k ”, “m ”, and “k + 1 ” denote 

the values at the old, intermediate, and new time levels, respec- 

tively; ε denotes the rate of change of the vector U at the inter- 

mediate time level; and F i ± 1/2, j and G i , j ± 1/2 are the numerical 

flux vectors at the cell interfaces. The discretization of the friction 

force term (see Eq. (7b) ) is irrelevant for this study, and the point 

implicit method ( Fiedler and Ramirez, 20 0 0 ) may be used to en- 

hance numerical stability. 

To calculate the numerical fluxes F i ± 1/2, j and G i , j ± 1/2 in Eq. 

(7a) , various approaches have been proposed in the literature. 

Here, we consider a widely used Godunov-type scheme, the HLLC 

(HLL with restoring the contact surface) approximate Riemann 

solver ( Toro et al., 1994 ) for flux evaluations. Note that in the orig- 

inal proof of the well-balanced property of SWE-ZZ by Liang and 

Borthwick (2009) , the HLL solver was used. The HLLC solver chosen 

here is a more sophisticated approach, which will be used in the 

analysis work in Section 3 . Note that if an HLLC-based numerical 

scheme is well-balanced, then the corresponding HLL-based ver- 

sion should also be well-balanced. The HLL and HLLC solvers rely 

on evaluations of the eigenstructure of the equation system, and 

when the eigenstructure of the problem is known they can help 

resolve sharp fronts in the vicinity of discontinuities with high ac- 

curacy, and capture the wet/dry fronts accurately when applied 

for solving the SWEs ( Toro, 2001 ). The HLLC solver estimates the 
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