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a b s t r a c t

A new vorticity–divergence formulation of the two-dimensional shallow water equations including boundary

conditions is derived. The new formulation is necessary since the conventional one does not lead to a well-

posed initial boundary value problem for limited-area modelling.

The new vorticity–divergence formulation includes four dependent variables instead of three and requires

more equations and boundary conditions than the conventional formulation. On the other hand, it forms a

hyperbolic set of equations with well-defined boundary conditions that leads to a well-posed problem with

bounded energy.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The vorticity–divergence form of the shallow water equa-

tions (SWE) is regularly used in global spectral modelling (e.g.,

Durran, 2010; Kantha and Clayson, 2000; Krishnamurti et al., 2006;

Miller, 2007; Satoh, 2014). Oceanic applications using the vorticity–

divergence form of the SWE are given by Frisius et al. (2009), Pearce

and Esler (2010), Rajpoot et al. (2012) and Wang and Shi (2008). The

SWE in a non-rotating frame are used in environmental and civil en-

gineering applications (e.g., Sanders and Katopodes, 2000; Sanders,

2001; Sanders et al., 2008, 2010).

It has been demonstrated that using the vorticity and divergence

as prognostic variables leads to advantages such as easy implementa-

tion of potential vorticity and potential enstrophy conservation prin-

ciples and control of gravity waves via divergence damping. In ad-

dition, the vorticity and divergence are scalar variables in all coor-

dinate systems (e.g., Durran, 2010; Ehrendorfer, 2012; Haltiner and

Williams, 1980; Kantha and Clayson, 2000; Miller, 2007; Randall,

1994).

Nevertheless, excluding the spectral method, the vorticity and

divergence variables are seldom employed in computational algo-

rithms developed for global and limited-area models. The main
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reasons are (i) the difficulty in solving elliptic equations for the hor-

izontal velocity components from the vorticity and divergence rela-

tions and (ii) the lack of suitable boundary conditions to close the

system for limited-area domains. Efficient numerical algorithms such

as the well-known multigrid technique (e.g., Trottenberg et al., 2001)

or modern algorithms developed for solutions of linear systems (e.g.,

Boyd et al., 2013) can potentially be used to overcome the first draw-

back. In this paper we focus on the second drawback.

Well-posed boundary conditions for the SWE in terms of horizon-

tal velocity components have been investigated by many researchers.

For the one-dimensional SWE, well-posed boundary conditions have

been derived by transforming them into a set of decoupled scalar

equations (Durran, 2010; Miller, 2007). Oliger and Sundström (1978)

derived well-posed boundary conditions for several sets of partial dif-

ferential equations including the SWE by using the energy method.

Ghader and Nordström (2014) derived a general form of well-posed

open boundary conditions using similar techniques. The derivation of

boundary conditions and well-posedness of the equations for ocean

simulation models was the main subject of research in Palma and

Matano (1998), Marchesiello et al. (2001), Treguier et al. (2001), and

Blayo and Debreu (2005).

In this paper we derive a new vorticity–divergence formulation

for the two-dimensional SWE including boundary conditions. The

motivation for this is the realization that the conventional one does

not lead to a well-posed initial boundary value problem for limited-

area modelling. The core mathematical tool that we use is the energy

method where one bounds the energy of the solution by choosing a
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minimal number of suitable boundary conditions (Gustafsson, 2008;

Gustafsson et al., 1995; Nordström, 2007; Nordström and Svärd,

2005). In the initial stage of the analysis we also employ Fourier

analysis.

The remainder of this paper is organized as follows. The three dif-

ferent forms of the SWE that will be discussed are given in Section 2.

As an introduction to the limited-area problem, we briefly discuss the

Cauchy problem in Section 3. In Section 4 we define well-posedness

and show that the standard SWE in vorticity–divergence form does

not lead to a well posed problem. The core content of the paper is

given in Section 5 where we derive energy estimates and boundary

conditions for the new SWE formulation, and show that it is well-

posed. Finally, conclusions and future work are given in Section 6.

2. The shallow water equations

The inviscid single-layer shallow water equations (SWE), includ-

ing the Coriolis term, are (Haidvogel and Beckmann, 1999; Miller,

2007; Pedlosky, 1987; Vallis, 2006)

ũt + ũũx + ṽũy − f ṽ + gh̃x = 0 (1)

ṽt + ũṽx + ṽṽy + f ũ + gh̃y = 0 (2)

h̃t + ũh̃x + ṽh̃y + h̃(ũx + ṽy) = 0, (3)

where ũ and ṽ are the velocity components in the x and y directions

respectively. Furthermore, h̃ represents the surface height, f is the

Coriolis parameter, and g is the acceleration due to gravity.

Remark 1. The analysis in this paper is also valid for a varying Cori-

olis parameter since the skew-symmetry of the zero order terms are

preserved. A change of coordinate system does not change the princi-

ple of the analysis, and an extension to spherical geometry is straight-

forward.

2.1. The linearized SWE in terms of velocities and height

The vector form of the two-dimensional SWE linearized around a

constant basic state can be written

ũt + Ãũx + B̃ũy + C̃ũ = 0 (4)

where ũ = (u, v, h)T and the subscripts t, x, y denote the derivatives

with respect to time and space respectively. The matrices Ã, B̃ and C̃

are

Ã =
(

U 0 g
0 U 0
H 0 U

)
, B̃ =

(
V 0 0
0 V g
0 H V

)
, C̃ =

(
0 − f 0
f 0 0
0 0 0

)
.

Here, u and v are the perturbation velocity components and h is the

perturbation height. In addition, U, V and H represent the constant

mean fluid velocity components and height.

2.2. The SWE in terms of vorticity–divergence and height

The vorticity ζ̃ = ṽx − ũy and divergence δ̃ = ũx + ṽy in Cartesian

coordinates (x, y) can be used as prognostic variables instead of the

two components of the velocity. By differentiating Eqs. (1) and (2)

and combining them, the SWE in terms of vorticity, divergence and

height become

ζ̃t + ũζ̃x + ṽζ̃y + (ζ̃ + f )δ̃ = 0 (5)

δ̃t + ũδ̃x + ṽδ̃y + g(h̃xx + h̃yy) − f ζ̃ − 2J(ũ, ṽ) + δ̃2 = 0 (6)

h̃t + ũh̃x + ṽh̃y + h̃δ̃ = 0 (7)

where J(ũ, ṽ) = ũxṽy − ũyṽx.

The vector form of the two-dimensional SWE (5)–(7) linearized

around a constant basic state can be written

ūt + Āūx + B̄ūy + C̄ū + D̄ūxx + Ēūyy = 0 (8)

where ū = (ζ , δ, h)T are the perturbation vorticity, divergence and

height respectively. The matrices Ā, B̄, C̄, D̄ and Ē in (8) are

Ā =
(

U 0 0
0 U 0
0 0 U

)
, B̄ =

(
V 0 0
0 V 0
0 0 V

)
, C̄ =

(
0 f 0

− f 0 0
0 H 0

)

D̄ =
(

0 0 0
0 0 g
0 0 0

)
, Ē =

(
0 0 0
0 0 g
0 0 0

)
.

Remark 2. The differentiation of Eqs. (1) and (2) introduce the Lapla-

cian of the height (as well as the divergence and vorticity as zero or-

der terms). This removes the clean hyperbolic character of the for-

mulation, which as we will show below, leads to significant stability

problems.

2.3. The SWE in terms of vorticity–divergence and gradients of height

For reasons that will be explained in detail below, we introduce

yet another form of the SWE, where we use the gradients of height as

new variables. By differentiating also the height Eq. (3) with respect

to x and y and combining the equations for the new variables h̃x, h̃y

with (5) and (6), we obtain the new extended system

ζ̃t + ũζ̃x + ṽζ̃y + (ζ̃ + f )δ̃ = 0 (9)

δ̃t + ũδ̃x + ṽδ̃y + g((h̃x)x + (h̃y)y) − f ζ̃ − 2J(ũ, ṽ) + ζ̃ 2 = 0 (10)

(h̃x)t + ũ(h̃x)x + ṽ(h̃x)y + h̃δ̃x + (h̃x)ũx + (h̃y)ṽx + (h̃x)δ̃ = 0 (11)

(h̃y)t + ũ(h̃y)x + ṽ(h̃y)y + h̃δ̃y + (h̃x)ũy + (h̃y)ṽy + (h̃y)δ̃ = 0. (12)

The four variables ζ̃ , δ̃, h̃x, h̃y are determined by the four Eqs. (9)–(12).

Just as in the formulations above, we linearize Eqs. (9)–(12)

around a constant state and obtain the vector form

ut + Aux + Buy + Cu = 0 (13)

where u = (ζ , δ, hx, hy)T are the perturbation variables and A, B and

C are

A =

⎛⎜⎝U 0 0 0
0 U g 0
0 H U 0
0 0 0 U

⎞⎟⎠, B =

⎛⎜⎝V 0 0 0
0 V 0 g
0 0 V 0
0 H 0 V

⎞⎟⎠,

C =

⎛⎜⎝ 0 f 0 0
− f 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎠.

Remark 3. By introducing the gradients of the height (h̃x, h̃y) as

dependent variables, we remove the Laplacian in (6) (h̃xx + h̃yy →
(h̃x)x + (h̃y)y), and reintroduce the hyperbolic character of the gov-

erning system. This will be shown below to restabilize the SWE

which was destabilized by going from the velocity–height form to the

vorticity–divergence–height form.

Remark 4. The linearization around a constant state performed

above, is the most common and straightforward one. Linearization

around variable states are more general, but often leads to excessive

algebra and inconclusive results (since the sign of the gradients in the

additional coefficient matrices are unknown). This is the case also for

the formulations considered above. For more details on these mat-

ters, see Section 4.1 below.
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