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a b s t r a c t

Current ocean models have relatively large errors and biases in the Southern Ocean. The aim of this study is

to provide a reanalysis from 1985 to 2006 assimilating sea surface temperature, sea ice concentration and sea

ice drift. In the following it is also shown how surface winds in the Southern Ocean can be improved using sea

ice drift estimated from infrared radiometers. Such satellite observations are available since the late seventies

and have the potential to improve the wind forcing before more direct measurements of winds over the ocean

are available using scatterometry in the late nineties. The model results are compared to the assimilated data

and to independent measurements (the World Ocean Database 2009 and the mean dynamic topography

based on observations). The overall improvement of the assimilation is quantified, in particular the impact

of the assimilation on the representation of the polar front is discussed. Finally a method to identify model

errors in the Antarctic sea ice area is proposed based on Model Output Statistics techniques using a series of

potential predictors. This approach provides new directions for model improvements.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Observations of the sea ice extent in the Southern Ocean derived

from satellite data display a trend of 0.13 to 0.2 million km2 per

decade between November 1978 and December 2012 (Vaughan et al.,

2013). Although the magnitude of this trend is subject to uncertain-

ties (e.g., Eisenman et al., 2014), the behavior of the Antarctic sea

ice cover is in sharp contrast with its Arctic counterpart which dis-

plays a decrease in sea ice extent over the last decades (e.g., Turner

and Overland, 2009). Several explanations have been proposed to

account for the slight increase in Antarctic sea ice extent but no

consensus has been reached yet. Among the proposed mechanisms,

a potential link with the stratospheric ozone depletion has been

pointed out (Solomon, 1999) but this hypothesis is not compatible

with recent analyses (e.g., Bitz and Polvani, 2012; Smith et al., 2012;

Sigmond and Fyfe, 2013). Changes in the atmospheric circulation or

in the ocean stratification may also have contributed to the observed
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expansion of the sea ice cover (e.g., Zhang, 2007; Stammerjohn et al.,

2008; Goosse et al., 2009; Kirkman and Bitz, 2011; Landrum et al.,

2012; Holland and Kwok, 2012; Bintanja et al., 2013; Goosse and

Zunz, 2014; de Lavergne et al., 2014). The internal variability of the

system, particularly strong in the Southern Ocean, may be responsi-

ble for the observed positive trend in Antarctic sea ice extent as well

(e.g., Mahlstein et al., 2013; Zunz et al., 2013; Polvani and Smith, 2013;

Swart and Fyfe, 2013).

Observations in the Southern Ocean are rather sparse in space and

time. In particular, reliable observations of the sea ice concentration

are available from the late 1970’s only (e.g., Parkinson and Cavalieri,

2012). In this context, climate models constitute adequate tools to

compensate for the lack of observations and investigate the processes

that govern the behavior of the sea ice cover around Antarctica. Cou-

pled climate models are particularly useful to analyze the interactions

between the different components of the climate system. Present-day

general circulation models involved in the 5th Coupled Model Inter-

comparison Project (Taylor et al., 2011) generally simulate a decrease

in the Antarctic sea ice extent over the last 30 years but a positive

trend such as the observed one remains compatible with the inter-

nal variability simulated by these models (e.g., Mahlstein et al., 2013;

Zunz et al., 2013; Polvani and Smith, 2013; Swart and Fyfe, 2013).
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Nevertheless, these models often display systematic biases in their

representation of the seasonal cycle or of the internal variability (or

both) of the Antarctic sea ice (e.g., Turner et al., 2013; Zunz et al.,

2013). The reconstruction of the sea ice cover in the Southern Ocean

provided by these models have thus to be considered cautiously.

One way to more closely constrain the simulation of the ocean

and the sea ice is to prescribe the atmospheric conditions at the

atmosphere/ocean–sea ice interface. These so-called “forced” simu-

lations resort generally to atmospheric reanalyses as boundary con-

ditions, and have been used extensively to study the past variabil-

ity of the ocean and sea ice states (Fichefet et al., 2003; Fichefet and

Maqueda, 1999; Holland et al., 2014; Zhang, 2007). It is clear the qual-

ity of these forced simulations is strongly dependent on that of the at-

mospheric product utilized. Intercomparisons between different re-

analysis products and assessments against in-situ measurements all

suggest that the reanalyzed atmospheric data are subject to large un-

certainties or systematic errors in the Southern Ocean (Bromwich

et al., 2007; Hines et al., 2000; Vancoppenolle et al., 2011) trans-

lating inevitably to the ocean–sea ice system (Stössel et al., 2011;

Timmerman et al., 2004).

An even tighter constraint on the oceanic and sea ice states can

be realized if observations are used to update model estimates. Data

assimilation has been an active area of research in climate science. A

limited number of studies have, however, attempted to implement

data assimilation in the Southern Ocean (Balmaseda et al., 2008;

Carton and Giese, 2008; Ferry et al., 2012; Janjić et al., 2012;

Massonnet et al., 2013; Stammer et al., 2002; Stössel, 2008) where

pressing scientific questions remain, though.

Implementing a data assimilation method in a large-scale ocean–

sea ice model presents a number of challenges as several method-

ological, statistical and physical questions are raised. In theory, the

background error statistics should be perfectly known in order for the

data assimilation to produce an optimal analysis. This is not feasible

in practice, due to the very high dimensionality of the state vector.

For this reason, the true covariance matrix of background errors is

projected onto a space of much lower dimensionality and specified

either a priori (Ferry et al., 2012) or estimated on-the-fly (Mathiot

et al., 2012; Sakov et al., 2012) using a finite-size ensemble. For com-

putational reasons, it is also common to assume a diagonal structure

for the observational error covariance matrix (i.e., uncorrelated er-

rors) while this is not necessarily the case in reality.

Most data assimilation methods also rely on statistical hypothe-

ses. The Gaussianity of background and observational errors is often

assumed, but rarely fulfilled. Not only can this lead to sub-optimal

updates, this can also lead to physical inconsistencies. Resorting to

the transformation of variables (e.g. Bertino et al., 2003; Simon and

Bertino, 2009; Béal et al., 2010) can be a first step, but it only acts

on the marginal, and not multivariate probability distribution func-

tions. Likewise, since the background statistics are boiled down to the

covariance matrix, the update of non-assimilated fields follows their

linear relationship with the observable; this may result in an unphys-

ical or imbalanced state after the update in regions where strong non-

linearities are present, e.g. between sea surface temperature and sea

ice concentration (Lisæter et al., 2003).

Last but not least, a central and non-trivial issue concerns the

decision on what should be estimated. While the state itself is

commonly estimated for reanalysis purposes, the methods can be

extended to the estimation of model bias to identify systematic errors

(Sakov et al., 2012), to the estimation of model parameters to partly

reduce such systematic errors (Massonnet et al., 2014) and ultimately

to surface forcing estimation (Barth et al., 2011; Marmain et al., 2014;

Ngodock and Carrier, 2014). The estimation of atmospheric forcing

in the Southern Ocean has, to our knowledge, not been explored.

Because Antarctic sea ice trends are largely controlled by the wind

forcing (Holland and Kwok, 2012; Kimura, 2004), it seems natural to

improve the representation of ice drift in the model. We propose to

correct the wind forcing using satellite sea ice drift data, taking ad-

vantage of the strong relationship between sea ice drift and the wind

field.

A first set of preliminary experiments have shown the difficulty

to assimilate ice drift in a coupled ocean-sea ice model. Sea ice drift

is strongly related to the wind forcings (Holland and Kwok, 2012;

Kimura, 2004) with a temporal scale of the order of days (about 4

days based on the autocorrelation). The memory of the sea ice drift

is thus relatively short. The corresponding time scale is in fact more

similar to the temporal scale of the atmospheric variability than the

temporal scale of ocean mesoscale circulation (order of weeks). This

short scale would require in principle a very frequent assimilation

of sea ice drift data to adequately resolve its underlying time-scale.

However, a too frequent assimilation can deteriorate the model re-

sults (e.g. Malanotte-Rizzoli et al., 1989; Barth et al., 2007; Yan et al.,

2014). To improve sea ice drift in the model, we therefore propose to

correct the wind forcing. This is possible due to the strong relation-

ship between wind field and sea ice drift (Holland and Kwok, 2012).

The objective of the study is to propose a methodology to use sur-

face drift observations to constrain an ocean-sea ice large-scale circu-

lation model. We also aim to test this approach in combination with

sea surface temperature and sea ice concentration assimilation in a

decadal simulation and to assess the quality of the results with in-

dependent data. This study also outlines an approach to evaluate the

presence of model errors at the forecast step of the data assimilation

and to identify their potential sources

The ocean model is introduced in Section 2 and then the used ob-

servations along with their error covariance are discussed (Section 3).

The procedure adopted to correct the wind field is detailed and vali-

dated in Section 4. The data assimilation implementation is discussed

in Section 5 and the results of the reanalysis are then presented and

validated (Section 6). In the last section, post-processing techniques

are used to relate forecast errors in sea ice coverage with model errors

associated with the dynamics of sea surface temperature.

2. Model

The primitive-equations model used in this study is NEMO (Nu-

cleus for European Modelling of the Ocean, Madec (2008)), cou-

pled to the LIM2 (Louvain-la-Neuve Sea Ice Model) sea ice model

(Bouillon and Maqueda, 2009; Fichefet and Maqueda, 1997; Timmer-

mann et al., 2005). The global ORCA2 implementation is used, which

is based on an orthogonal grid with a horizontal resolution of the or-

der of 2° and 31 z-levels (Massonnet et al., 2013; Mathiot et al., 2011).

The hydrodynamic model is configured to filter free surface gravity

waves by including a damping term. The leap-frog scheme uses a time

step of 1.6 h for dynamics and tracers. The model is forced using air

temperature and wind from the NCEP/NCAR reanalysis (Kalnay et al.,

1996). Relative humidity, cloud cover and precipitation are based on

a monthly climatological mean. The sea surface salinity is relaxed to-

wards climatology with a fresh water flux of −27.7 mm/day times the

salinity difference in psu.

As in the following the link between sea ice drift and wind stress

is studied, only the equation for sea ice drift is given here. The sea ice

drift u is governed by the momentum equation where the advection

of momentum is neglected by scale analysis (Fichefet and Maqueda,

1997):

m
∂u

∂t
= −m f ez ∧ u + τai + τwi − mg∇ζ + F (1)

where m is the mass of the snow-ice system, f is the Coriolis param-

eter, ez is a unit vector pointing upward, τai (resp. τwi) denotes the

drag with air (resp. water), g is the acceleration due to gravity, ζ is

the surface elevation and F the force due to the variation of internal

stresses. For the complete model equations, the interested reader is
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