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a b s t r a c t

The evolution of nonlinear deep-water wave groups in one-horizontal dimension is studied. The strongly

nonlinear Green–Naghdi (GN) models are used to simulate this phenomenon. There are different levels

of the GN models depending on the different velocity assumption used for the vertical structure of the

flow field, such as GN-1, GN-2, and so forth. In this work, we use both the GN-3 and GN-4 models to do

the simulations. Calculations are done for three different numbers of waves per group (or packet) as the

number of envelope solitons depends on the number of waves per group (N). The numerical results show

that the GN-3 model can give the converged GN results for the cases tested here. We conduct a series of

physical experiments to investigate the evolution of wave groups. We also use other’s experimental data

and present laboratory measurements to compare the data with the predictions of the GN models and

show that good agreement is obtained overall.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The wave group evolution is an important topic in which there

are many phenomena remaining undiscovered related to modula-

tion of wave trains or packets.

In many experiments, the modulation of wave packets has been

observed. Most of these works are based on the unidirectional

waves. Su (1982) conducted a series of experiments on strongly

nonlinear gravity-wave groups in deep water in a long towing

tank. In their experiments, different nonlinearity and different N (N

means the number of waves per group) are considered. As much as

N = 60 was studied in the experiments. Tulin and Waseda (1999)

conducted experiments on long-time evolution of wave groups by

unstable three-wave systems. They discovered that the recurrent

modulation periodically increases and decreases and this agrees

with the results of the experimental study of Lake et al. (1977).

Hwung et al. (2007) also investigated the long-time evolution of

waves by means of a uniform wave with an imposed sideband

wave. They found out that the amplitudes of the fastest growth

sidebands exhibit a symmetric exponential growth until the onset

of wave breaking, after which the phenomenon of frequency shift-

ing will occur. Galchenko et al. (2010) and Tian and Choi (2013)
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conducted experimental studies of various effects, such as break-

ing effects and wind force, on the evolution of deep water wave

groups.

There are many numerical studies based on nonlinear

Schrödinger (NLS) equations. Shemer et al. (2002) studied the

spatial evolution of nonlinear narrow-spectrum deep-water wave

groups by using laboratory and computational method. The com-

putation is based on the unidirectional Zakharov equation. It is ac-

curate to the 3rd order in nonlinearity, as is the cubic Schrödinger

equation (CSE). But contrary to the CSE, the Zakharov equa-

tion is free from any restriction on spectral width. Adcock and

Taylor (2009) investigated the nonlinear evolution of unidirec-

tional spread wave groups on deep water by using the NLS

equation. They presented approximately analytical results for the

evolution of one-dimensional localized wave groups, and com-

pared the numerical results with Bateman et al. (2001)’s nonlinear

theory.

The high-order spectral (HOS) method is another good model to

study surface wave evolution. Dommermuth and Yue (1987) sim-

ulated the evolution of wave packets by using HOS method and

compared their results with the experimental measurements of Su

(1982). Mori and Yasuda (2002) investigated the effects of non-

linear interactions on wave groups by comparing the results of

HOS method with the second-order approximate equations. The

HOS method is better in the description of generation of high-crest

waves.
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Fig. 1. Comparison of the linear dispersion relation of different levels of the GN model in deep water.

Neither the HOS method nor the NLS equations is a strongly

nonlinear model. In this work, we use a strongly nonlinear numer-

ical model called the Green–Naghdi (GN) model to investigate the

evolution of uniform wave groups in deep water. The GN equations

satisfy the nonlinear free-surface boundary conditions exactly. The

only approximation made is on the vertical structure of the ve-

locity field by a shape function along the water column. The gov-

erning equations of the GN models are the depth-integrated form

of Euler’s equations. There are GN equations for deep-water waves

and shallow-water waves based on different velocity field assump-

tion. This paper focuses on the GN equations for deep-water waves.

The deep water GN models are classified into different levels, such

as GN-1, GN-2, . . . , and so forth, based on these approximated

functions of the velocity field over the water column. Webster and

Kim (1991) and Webster (2009) used the GN-3 equations to ana-

lyze large amplitude, deep-water waves in the time domain. They

did not check the self-convergence of the GN models by using the

GN-4 model.

The main goal of this paper is to study whether the GN

model is satisfactory for modeling modulation instabilities in uni-

directional wave-trains and present the self-convergence tests by

comparing different levels of the GN equations. In doing so, we

also have conducted experiments on the evolution of uniform wave

groups of different wave steepness, wave lengths and wave heights.

The present and Su (1982)’s experimental data are used to com-

pare with the predictions of the GN equations in this work.

In Section 2, the GN equations for deep water waves are intro-

duced. Section 3 provides the linear dispersion relation of the GN

equations. Section 4 introduces the algorithm used in this work.

The boundary conditions are discussed in Section 5. The numer-

ical test cases calculated by the GN equations are presented in

Section 6. These are followed by the conclusions we reached in

Section 7.

2. Deep water Green–Naghdi (GN) model

In one horizontal dimension, x, the Cartesian coordinate system

has its origin at the mean water level, and the vertical axis, z is

taken as positive against gravity. The horizontal and the vertical

velocity components are represented by u(x, z, t) and w(x, z, t), re-

spectively, where t denotes time. The free surface is indicated by

z = β(x, t). We assume here that the fluid is incompressible and

inviscid.

In the entire flow field, the horizontal and vertical velocities

should satisfy the continuity equation for an incompressible fluid

∂u

∂x
+ ∂w

∂z
= 0. (1)

And the conservation equations of momentum can be expressed

as

∂u

∂t
+ u

∂u

∂x
+ w

∂u
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= − 1

ρ

∂ p

∂x
, (2a)

∂w
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+ u
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+ w
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= − 1

ρ
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∂ p

∂z
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)
, (2b)

where ρ is the density of the fluid and g the gravitational acceler-

ation.

The kinematic free surface condition is given by

w − ∂β

∂t
− u

∂β

∂x
= 0, z = β(x, t). (3)

The bottom boundary condition is satisfied in infinite water depth

as (u, w) → 0 as z → −∞. And the atmospheric pressure on the

free surface, p̂(x, t), can be regarded as negligible without loss in

generality, so that the dynamic free surface boundary condition is

that the fluid pressure is p(x, z = β, t) = 0.

In the GN model, the horizontal and vertical velocities can be

expressed approximately as

u(x, z, t) =
K−1∑
n=0

un(x, t)λn(z) , (4a)

w(x, z, t) =
K−1∑
n=0

wn(x, t)λn(z) , (4b)

where the shape functions, λn(z), could be chosen as ekrzzn

(Webster and Kim, 1991) in deep water, un(x, t) and wn(x, t) are

the velocity coefficients; they are functions of time and horizontal
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