
Ocean Modelling 95 (2015) 25–36

Contents lists available at ScienceDirect

Ocean Modelling

journal homepage: www.elsevier.com/locate/ocemod

Pragmatic aspects of uncertainty propagation: A conceptual review

W. Carlisle Thacker a,∗, Mohamed Iskandarani b, Rafael C. Gonçalves b, Ashwanth Srinivasan c,
Omar M. Knio d,e

a Independent Scholar
b University of Miami, Miami, FL, United States
c Tendral Corporation, Miami, FL, United States
d Duke University, Durham, NC, United States
e King Abdullah University of Science and Technology, Saudi Arabia

a r t i c l e i n f o

Article history:

Received 7 October 2014

Revised 28 July 2015

Accepted 3 September 2015

Available online 11 September 2015

Keywords:

Polynomial chaos

Gaussian process

Optimal interpolation

Ocean modeling

Error propagation

Uncertainty quantification

a b s t r a c t

When quantifying the uncertainty of the response of a computationally costly oceanographic or meteorolog-

ical model stemming from the uncertainty of its inputs, practicality demands getting the most information

using the fewest simulations. It is widely recognized that, by interpolating the results of a small number of

simulations, results of additional simulations can be inexpensively approximated to provide a useful esti-

mate of the variability of the response. Even so, as computing the simulations to be interpolated remains the

biggest expense, the choice of these simulations deserves attention. When making this choice, two require-

ment should be considered: (i) the nature of the interpolation and (ii) the available information about input

uncertainty. Examples comparing polynomial interpolation and Gaussian process interpolation are presented

for three different views of input uncertainty.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Numerical models are important tools for understanding the be-

havior of the ocean and atmosphere. In particular, they can be used

to make quantitative predictions of future conditions. For the value

of such predictions to be assessed, they should be accompanied by

quantitative information about their reliability.

While the model’s formulation – the physical processes and how

they are treated – has a major impact on its prediction, the impact

of alternative formulations is not discussed here.1 Instead, the model

is regarded as a reliable black box and the focus is on assessing the

uncertainties of the numbers it produces (its outputs or responses),

which result from the uncertainties of the numbers it is given (its

inputs). When making planning decisions, only a few of a model’s

many outputs are generally of interest, so estimates of accuracy can

be restricted to those few outputs. Computational resources limit the

number of uncertain inputs that can be treated simultaneously to a

manageable few, so most of the inputs must be treated as known
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1 Webster and Sokolov (2000) discuss the role of model formulation when quanti-

fying uncertainty of climate projections.

even though their values are by no means certain. What we discuss

here should be regarded as conditional uncertainties – uncertainties

conditioned on the values assumed to be known and on the model’s

formulation. We are interested in how the model transforms informa-

tion about the uncertainty of selected inputs into information about

key outputs.

Suppose uncertainties of the inputs are quantified as a probability

density centered on their most likely values, and suppose that a large

ensemble of possible inputs are sampled according to this density.

Then, assuming sufficient computational resources are available, for

each set of inputs from this ensemble the model can be run to provide

corresponding responses, and a histogram of these responses can ap-

proximate the probability density quantifying the uncertainty of the

model’s response stemming from the uncertainty of its inputs. In or-

der to carry out this Monte Carlo agenda, two practical issues must

be addressed: (1) how to proceed when the model’s computational

requirements limit the number of runs that can be made and (2) how

to proceed when there is limited information about the uncertainties

of the models inputs.2

Before computers were available propagating uncertainty had al-

ready been recognized as being important. Wiener (1938) addressed

the problem within the context of a single uncertain input and a

2 Webster and Sokolov (2000) discuss the issue of uncertainty about input

uncertainty.
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single response. Rather than addressing issue (2), he assumed the in-

put density to be a known Gaussian. His approach was to approxi-

mate the response as a polynomial function of the input expressed as

a truncated expansion in Hermite polynomials,3 and solving for the

expansion coefficients became the major computational task.4 Be-

cause of the orthogonality of Hermite polynomials when weighted

by the Gaussian density,5 statistics such as the mean and variance of

the response could be expressed as simple functions of the expansion

coefficients, so there was no need to sample from the input density.

Wiener’s approach has spawned a great deal of recent activity and is

referred to as polynomial chaos in the engineering literature.6

Although Wiener (1938) did not appear to recognize it, the most

important aspect of his approach was approximating a nonlinear re-

sponse using an inexpensively evaluated polynomial function, which

could serve as an emulator or surrogate for the original model. Because

running the emulator is much less expensive than running the orig-

inal model, Monte Carlo sampling becomes affordable. This reduces

issue (1) to the more manageable concern of how using emulated re-

sponses impacts our view of response uncertainty. Moreover, it also

provides an answer to issue (2) – how to deal with uncertainty about

input uncertainty: simply consider several alternative descriptions of

the input uncertainty and construct histograms of the response for

each. Comparing the histograms to assess the impacts of the the alter-

native views of input uncertainty clearly must reflect how they alter

practical decisions.

Running the emulator is simple. The bulk of the computation ef-

fort is in building it, as the model must be run repeatedly to gener-

ate enough responses to interpolate. A major point of this paper is

that it is best to organize computational effort in such a way that al-

lows alternative input densities to be explored in a flexible and cost-

effective manner. For each input density, sampling should reflect its

more likely values, so that the response is most accurate where it is

most important. When using quadrature to compute the expansion

coefficients, the polynomial chaos formulation that links the input

density to the orthogonality of the polynomials guarantees this sort

of sampling as long as the input density is correct, but changing the

input density requires redoing the sampling.7 Our point is that it is

important to be able to interpolate more flexibly so that sampling

and interpolating can be incremental, so that as the view of input un-

certainty changes existing samples need only be supplemented by a

few more to improve accuracy for input values previously considered

unlikely. Solving an algebraic system for the expansion coefficients,

rather than using quadrature, provides this needed flexibility.8

An emulator need not be restricted to polynomial interpolation.

Gaussian process interpolation has also been used for this purpose.9

Rather than treating the response as a sum of specified functions

of the random inputs, the response function itself is regarded as a

random function. More specifically, for each input, the output has a

specified mean and variance, and for each pair of inputs there is a

specified covariance. It is easy to recognize this as a novel applica-

3 His use of Hermite polynomials was tied to his use of a Gaussian probability den-

sity, since Hermite polynomials are orthogonal when weighted by a Gaussian density.

If he had expanded in Legendre polynomials, the method requires a uniform input den-

sity, and Laguerre polynomials require an exponential density. See, for example, Eldred

et al. (2008) or Xiu (2009).
4 See Appendix A for a brief discussion of how the coefficients might be computed.
5 Recall its use in the context of the meridional structure of equatorial Rossby waves.
6 The reviews of Najm (2009) and Xiu (2009) provide brief introductions to polyno-

mial chaos and references to much of its literature.
7 See Appendix B.
8 See Appendix C.
9 Rougier et al. (2009) have used Gaussian processes for characterizing responses of

climate models. See also the articles by Sacks et al. (1989) and by Kennedy and O’Hagan

(2000) and the excellent book by Rasmussen and Williams (2006). Appendix D pro-

vides a brief discussion of Gaussian process interpolation. A reviewer recommended

the folowing articles as potentially inspiring: French (2003), Ratto et al. (2009), Yang

(2011), Borgonovo et al. (2012), Castaings et al. (2012).

tion of optimal interpolation, as it corrects a prior description of the

response surface using an assumed covariance function to interpolate

the information provided by model simulations. Using Gaussian pro-

cesses shifts the focus from determining coefficients of a polynomial

approximation to choosing appropriate mean and covariance func-

tions. Once these choices have been made and the responses of the

exploratory ensemble have been assimilated, the updated mean func-

tion serves as the approximate response function and the updated

variance function provides a measure of its accuracy.

We use a single input and a single output for illustrating these

ideas, as that allows the underlying issues to be discussed more

clearly. To illustrate our points, we use a model that simulates the

fate of oil droplets emerging from a deep underwater source and ris-

ing due to their buoyancy as they are advected by a prescribed veloc-

ity field. This model was chosen because a database of its simulations

was available and new simulations could be avoided. Uncertainty in

droplet size is the single uncertain input of interest and the single

response is the surface concentration of oil in a region some distance

from the source. The details of this model are unimportant here. What

matters is that the response is a highly nonlinear function of the in-

put. In the examples discussed below, polynomials and Gaussian pro-

cesses provide alternative interpolations for the same sets of simu-

lated responses and thus a framework in which the separate roles of

the choice of input density and the choice of the interpolation method

can be addressed.

These simulations had previously been used at an early stage of

model development to check how the uncertainty of surface oil con-

centration within a restricted region depended on the uncertainty of

droplet size at the spill site. These simulations are from two differ-

ent quadrature ensembles, one providing a 6th-degree polynomial

approximation to the response function and the other providing a

20th-degree polynomial approximation, which might be regarded as

being exact over the range of inputs considered. When combined and

then sub-sampled they provide the possibility of exploring different

approaches to interpolation and different views of input uncertainty.

This paper takes a step-by-step approach to illustrate the above

ideas incrementally. Section 2 describes the data from the database

of quadrature simulations and discusses the differences in the result-

ing 6th- and 20th-degree polynomial approximations to the response

curve, both of which indicate that the response is a highly nonlin-

ear function of droplet size. Section 3 discusses the histograms char-

acterizing the uncertainty in surface-concentration response, which

reflect the differences between these two views of the response

curve, under the assumption that the uniform probability density for

droplet size on which the quadrature ensembles were based is the

correct density. Section 4 illustrates how the existing 20th-degree

polynomial approximation to the response can be used to assess the

uncertainty of the surface oil concentration when the initial assump-

tion of uniform probability of droplet size is replaced with alternate

assumptions – without the need of any new simulations. Section 5 il-

lustrates how decoupling the polynomial approximation from the in-

put probability density can provide a more flexible choice of simu-

lations. And Section 6 explores Gaussian process interpolation as an

alternative to polynomial interpolation and illustrates its impact on

the propagation of uncertainty from droplet size to surface concen-

tration. As the focus is on practicality, methodological details are con-

fined to appendices. The paper ends with a few concluding remarks.

2. Simulated data

The context of this study is provided by a model being constructed

for simulating the effects of the Deepwater Horizon oil spill in the

Gulf of Mexico. While that model has many uncertain inputs and

many responses worthy of study, here we focus on one particular un-

certain input and one particular response, as they had been exam-

ined in the early stages of model construction and those quadrature



Download	English	Version:

https://daneshyari.com/en/article/4552011

Download	Persian	Version:

https://daneshyari.com/article/4552011

Daneshyari.com

https://daneshyari.com/en/article/4552011
https://daneshyari.com/article/4552011
https://daneshyari.com/

