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a b s t r a c t

Regional models actively forced with data from larger scale models at their open boundaries often con-
tain motion at different time-scales (e.g. tidal and low frequency). These motions are not always individu-
ally well specified in the forcing data, and one may require a more active boundary forcing while the
other exert less influence on the model interior. If a single relaxation time-scale is used to relax toward
these data in the boundary equation, then this may be difficult. The method of fractional steps is used to
introduce dual relaxation time-scales in an open boundary local flux adjustment scheme. This allows
tidal and low frequency oscillations to be relaxed independently, resulting in a better overall solution
than if a single relaxation parameter is optimized for tidal (short relaxation) or low frequency (long relax-
ation) boundary forcing. The dual method is compared to the single relaxation method for an idealized
test case where a tidal signal is superimposed on a steady state low frequency solution, and a real appli-
cation where the low frequency boundary forcing component is derived from a global circulation model
for a region extending over the whole Great Barrier Reef, and a tidal signal subsequently superimposed.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Limited area models nested within larger scale regional models
often make use of external data from the regional model in active
open boundary conditions, where a radiation condition is relaxed
toward the external data with a defined time-scale (Blumberg
and Kantha, 1985). Often this relaxation time-scale is adaptive,
where long timescales (days to years) are used if the diagnosed
wave phase is outgoing near the boundary (which reduces the
relaxation term of the radiation condition toward zero and makes
the OBC behave more like a pure radiation condition), and short
time-scales are used if waves are incoming (Marchesiello et al.,
2001). These short timescales must be less than the period of the
highest frequency wave present at the boundary; e.g. if a semi-
diurnal tide is present in the external data then a timescale of
hours may be appropriate.

The relaxation time-scale may be a function of the simulated
domain, and previous studies presented in the literature have used
a range of different values. Marchesiello et al. (2001) used 1 day
and 1 year for incoming and outgoing time-scales respectively
when forcing an eastern Pacific shelf model with climatology.

Treguier et al. (2001) used 1 day for incoming and 15 and
1500 days for outgoing waves in a model of the Atlantic forced
with climatology. Barnier et al. (1998) used 15 days and 5 years
for incoming and outgoing waves respectively for a South
Atlantic model, again forced with climatology. Blumberg and
Kantha (1985) used the time it takes a transient to traverse the
shelf as the relaxation time-scale in shelf models (they found 4 h
optimum for their application). Gan and Allen (2005) split the open
boundary solution into forced (derived from a 2D sub-model) and
interior components, diagnosed the phase speed from the interior
solution and radiated the interior solution for outgoing phases and
imposed the forced solution with timescale of 0.5 days for incom-
ing signals. These relaxation time-scales are constant in space and
time; Chen et al. (2013) developed an outgoing timescale diag-
nosed from the model state that is variable in space and time.

Although adaptive approaches are designed to retain a passive
character when phase speed is diagnosed as outgoing, in reality
this is not always achieved; phase speeds can resemble random
noise (Treguier et al., 2001) and radiation can be ineffective
(Herzfeld and Andrewartha, 2012). Additionally, when a tide is
imposed together with low frequency oscillations it becomes diffi-
cult to apply incoming relaxation timescales that accurately cap-
ture the amplitude and phase of the tide whilst allowing the
open boundary to retain some degree of passiveness and be trans-
missive to outgoing transients. Timescales that are too short will
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generate open boundary over-specification and an overly reflective
boundary (the boundary essentially becomes clamped), whereas
too long time-scales results in boundary under-specification where
the tidal signal is not reproduced. Herzfeld et al. (2011) used
30 min incoming and 20 days outgoing for a tidally resolved model
of Spencer Gulf, South Australia, and showed when the incoming
time-scale was increased to 4 h significant phase shifts were intro-
duced in the tidal signal. In the Great Barrier Reef (GBR) lagoon off
north-eastern Australia, at certain times of the year the low fre-
quency response is locally forced by wind, but large tides of ampli-
tude >4 m are also present. Development of an accurate open
boundary condition to capture both these processes in the GBR is
a motivating factor for this study.

In this study we seek to use relaxation techniques analogous to
the approach of spectral nudging, where in this approach only
specified frequencies of a prognostic field are nudged toward a
supplied climatology to allow simulated eddy fields to evolve with-
out drifting from the climatology (Stacey et al., 2006). In this case
we use dual relaxation time-scales, where a short timescale is
applied to the high frequency sea-level component (tides) and a
longer relaxation time-scale for the low frequency component.
We cast this dual relaxation in the open boundary condition of
Herzfeld and Andrewartha (2012). This condition is based on a
Dirichlet condition rather than radiation, using a local flux adjust-
ment to maintain volume conservation and to introduce the tidal
forcing. We cast the local flux adjustment into a form that accepts
dual fluxes, which we then split using the method of fractional
steps and subsequently apply different time-scales to each compo-
nent of the split normal boundary fluxes. The method is described
in detail in Section 2. We then apply the method to a simple test
case in Section 3 to demonstrate its effectiveness, and further to
a real domain in Section 4. Finally we draw some conclusions in
Section 5.

2. The dual relaxation method

The open boundary condition of Herzfeld and Andrewartha
(2012) is a Dirichlet based condition where 3D velocities from an
external model are directly applied to the open boundaries of the
downscaled model. Barotropic velocity open boundary conditions
are the depth average of these 3D velocities. The elevation is left
unconstrained in this OBC scheme in the sense that no open
boundary equation is applied, and elevation in the boundary cell
is solved by the continuity equation identically to the rest of the
domain. This allows elevation to perfectly respond to outward
propagating signals; it is this aspect of the open boundary condi-
tion that reduces the impact of over-specification error. However,
since volume fluxes through boundary sections invariably differ
between external and downscaled models (due to bathymetry dif-
ferences and interpolation error), the downscaled model is often
prone to basin filling or emptying over time. To overcome this, a
local flux adjustment is applied, where normal depth averaged
velocities are adjusted every time-step so that the volume diver-
gence in the boundary cell achieves some ‘target’ elevation (sup-
plied from the external model, and optionally augmented with
the tidal signal). The flux adjustment scheme can therefore influ-
ence elevation in the boundary cell by adjustment of the depth
averaged normal boundary velocity. The normal depth averaged
velocity is relaxed toward this adjusted velocity with a pre-defined
time-scale. If this relaxation timescale is equal to the 2D time-step,
then the target elevation is achieved exactly every time-step and
the boundary behaves as a (reflective) clamped condition. In prac-
tice, the relaxation timescale is usually provided by the user, not-
ing that using a timescale close to the 2D time-step results in
elevation rapidly converging on the supplied target elevation,

and a timescale much longer than the 2D time-step results in little
influence of the external sea level data. Herzfeld and Andrewartha
(2012) noted that if a timescale of sf ¼ h1=

ffiffiffiffiffiffiffiffi
gDB

p
is used (h1 = grid

spacing, DB = depth, g = acceleration due to gravity), then the local
flux adjustment takes the form of the Flather radiation condition
(Flather, 1976), and this time-scale can be considered a ‘default’
timescale that optimizes volume conservation and area averaged
kinetic energy in the domain (Herzfeld and Andrewartha, 2012).
However, this time-scale is too long to accurately reproduce the
tidal amplitude and phase characteristics in many domains, and
we seek an alternative timescale that optimizes actively applied
tidal signals but is passively responsive to low frequency signals
generated locally.

Assume that the normal barotropic velocity through the open
boundary face is equal to the sum of a high and low frequency
component, Vt

B ¼ VBT þ VBL. The continuity equation can be written
in a form where a flux through one cell face is similarly split into
contributions from high and low frequency depth averaged veloci-
ties, e.g. for a western boundary;

gtþDt � gt

Dt2D
¼ �rDU ¼ � Fiþ1 � ðFT þ FLÞ þ Fjþ1 � Fj

� �
=h1h2

¼ FT þ FL

A
� DF

A
ð2:1Þ

where U ¼ 1
g�H

R g
H udz is the depth average of velocity u (H < 0 is the

depth), gt+Dt and gt are the elevations at the forward and current
time-step respectively (using Euler forward time discretization),
Dt

2D is the 2D time-step, D = gt � H is total depth, h1 and h2 are
the grid spacing in the axis directions e1 and e2 respectively, FT is
the tidal volume flux through cell face i, FL is the low frequency vol-
ume flux through cell face i, Fi+1, Fj and Fj+1 are volume fluxes
through cell faces i + 1, j and j + 1 respectively,
DF ¼ Fiþ1 þ Fjþ1 � Fj and A ¼ h1h2.

Eq. (2.1) is then set up in two fractional steps (Kowalik and
Murty, 1993, p. 64);

1
2

g0 � gt

Dt2D=2
¼ g0 � gt

Dt2D
¼ FT

A
� DF

2A
ð2:2Þ

1
2

gtþDt � g0

Dt2D=2
¼ gtþDt � g0

Dt2D
¼ FL

A
� DF

2A
ð2:3Þ

where g0 is an intermediate elevation. Then Eq. (2.1) = (2.2) + (2.3).
Assume that target tidal and low frequency elevations are supplied,
gT and gL respectively. Following Appendix A in Herzfeld and
Andrewartha (2012), first set the flux required to achieve the eleva-
tion due to the tide (gT) using Eq. (2.2);

FT ¼
A

Dt2D
ðgT � gtÞ þ DF

2
ð2:4Þ

Given the depth at the boundary at time t (DB) and cell width in
e2 direction (h2), the depth averaged velocity required to achieve
this flux is;

VT ¼
FT

h2DB
ð2:5Þ

The velocity on the boundary is then relaxed towards VT using a
time-scale of sT according to (Eq. (A.3) in Herzfeld and
Andrewartha, 2012):

V 0BT ¼ Vt
B �

Dt2D

sT
ðVt

B � VTÞ ð2:6Þ

Here the prime (0) implies an approximation to the true tidal
velocity, VBT. The flux through the boundary cell to account for tidal
motion, FBT ¼ V 0BT h2DB, is then computed, followed by a new eleva-
tion in the boundary cell using Eq. (2.2);
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