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a b s t r a c t

Experience in numerical weather prediction suggests that singular value decomposition (SVD) of a fore-
cast can yield useful a priori information about the growth of forecast errors. It has been shown formally
that SVD using the inverse of the expected analysis error covariance matrix to define the norm at initial
time yields the Empirical Orthogonal Functions (EOFs) of the forecast error covariance matrix at the final
time. Because of their connection to the 2nd derivative of the cost function in 4-dimensional variational
(4D-Var) data assimilation, the initial time singular vectors defined in this way are often referred to as the
Hessian Singular Vectors (HSVs). In the present study, estimates of ocean forecast errors and forecast
error covariance were computed using SVD applied to a baroclinically unstable temperature front in a
re-entrant channel using the Regional Ocean Modeling System (ROMS). An identical twin approach
was used in which a truth run of the model was sampled to generate synthetic hydrographic observations
that were then assimilated into the same model started from an incorrect initial condition using 4D-Var.
The 4D-Var system was run sequentially, and forecasts were initialized from each ocean analysis. SVD
was performed on the resulting forecasts to compute the HSVs and corresponding EOFs of the expected
forecast error covariance matrix. In this study, a reduced rank approximation of the inverse expected
analysis error covariance matrix was used to compute the HSVs and EOFs based on the Lanczos vectors
computed during the 4D-Var minimization of the cost function. This has the advantage that the entire
spectrum of HSVs and EOFs in the reduced space can be computed. The associated singular value spec-
trum is found to yield consistent and reliable estimates of forecast error variance in the space spanned
by the EOFs. In addition, at long forecast lead times the resulting HSVs and companion EOFs are able
to capture many features of the actual realized forecast error at the largest scales. Forecast error growth
via the HSVs was found to be significantly influenced by the non-normal character of the underlying fore-
cast circulation, and is accompanied by a forward energy cascade, suggesting that forecast errors could be
effectively controlled by reducing the error at the largest scales in the forecast initial conditions. A pre-
dictive relation for the amplitude of the basin integrated forecast error in terms of the mean aspect ratio
of the forecast error hyperellipse (quantified in terms of the mean eccentricity) was also identified which
could prove useful for predicting the level of forecast error a priori. All of these findings were found to be
insensitive to the configuration of the 4D-Var data assimilation system and the resolution of the observ-
ing network.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

An important part of ocean forecasting is providing estimates of
forecast errors. A common approach is to use ensemble prediction
methods (i.e. where an ensemble of forecasts is generated by per-
turbing and rerunning the forecast model many times for a given
forecast interval) which have become an important component of

atmosphere, ocean and climate prediction at most operational cen-
ters, and provide information about the most likely state of the sys-
tem (the ensemble mean) and uncertainty in the forecast state (the
ensemble spread). Nonetheless, several important technical issues
surround ensemble prediction methods which can hamper their
application. First, because of the computational cost of running a
large forecast model, the number of ensemble members is
necessarily resource-limited. This leads to questions about the
minimum required ensemble size and how each ensemble member
should be generated given that the dimension of the forecast
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model will typically be several orders of magnitude larger than the
affordable number of ensemble members. Related to these issues is
the need for covariance localization in order to eliminate poten-
tially spurious correlations that arise from the limited size ensem-
ble. Finally, experience shows that the forecast error covariance of
the resulting ensemble tends to underestimate the true forecast
error, so some form of covariance inflation is typically required.

An alternative approach to the problem of predicting forecast
errors is using singular value decomposition (SVD; Ehrendorfer
and Tribbia, 1997) which we believe is more elegant than tradi-
tional ensemble methods, has a solid theoretical basis, and poten-
tially avoids many of the aforementioned issues that surround
ensemble methods. During the last three decades, analysis of sin-
gular vectors has advanced generalized stability theory (Farrell
and Ioannou, 1999), and non-normal perturbations in non-au-
tonomous flow fields in both the atmosphere (Farrell, 1982,
1990) and the oceans (Farrell and Moore, 1992), have been shown
to disrupt the predictability in the short- and medium-range
(Lorenz, 1965; Farrell, 1990; Betti and Navarra, 1995;
Houtekamer, 1995; Houtekamer and Derome, 1995). These so-
called ‘‘optimal perturbations’’ are identified with respect to norms
chosen a priori at the initial and final times of perturbation growth,
and differences arising from different choices of norm yield a vari-
ety of singular vector archetypes that have been explored in the
literature.

As a prelude to the important ideas that follow in later sections,
let dx denote a perturbation to the time evolving state-vector x of
the atmosphere or ocean, where x and dx are column vectors. SVD
in geophysical problems of very large dimension is usually
approached in terms of the Rayleigh quotient:

k ¼ dxTð0ÞMT DMdxð0Þ=dxTð0ÞGdxð0Þ ð1Þ

where M denotes the tangent linear propagator that evolves the
perturbation dx over the interval ½0; t�, while D and G define the
norms at final time and initial time respectively. Therefore k repre-
sents the ratio of the final time norm to the initial time norm. The
perturbation dx̂ that maximizes (1) with unit initial norm dx̂T Gdx̂
is, by definition, the leading eigenvector of the generalized eigen-
value equation:

MT DMdx̂ ¼ kGdx̂ ð2Þ

The vector dx̂ is a right singular vector of D
1
2M and k

1
2 is the

corresponding singular value.
In the study of forecast predictability and sensitivity, D is chosen

such that the final time norm is a useful metric of the forecast error.
Following Houtekamer (1995), Ehrendorfer and Tribbia (1997)
showed that identifying G as the inverse of the analysis error covari-
ance matrix yields singular vectors that evolve over the forecast
time interval into the leading eigenvectors of forecast-error covari-
ance matrix at final time (i.e. the forecast error Empirical Orthogo-
nal Functions (EOFs)). Unfortunately, the inverse analysis-error
covariance matrix can be difficult to obtain operationally, although
several approximations have proven useful. In 3D- and 4D-Var data
assimilation, the Hessian of the cost function yields the inverse
analysis-error covariance matrix, derived implicitly from the back-
ground error and observation error covariance matrices used in the
assimilation system. Identifying G with the Hessian yields the
so-called Hessian Singular Vectors (HSVs) which have been used
to initialize forecast ensembles at the European Centre for
Medium-range Weather Forecasts (ECMWF; Barkmeijer et al.,
1999). However, despite the practical utility of HSVs, they can be
costly to compute (Houtekamer, 1995; Barkmeijer et al., 1998). As
a first-order proxy for the analysis-error covariance, a frequent
choice of norm at both initial- and final-time is total perturbation
energy, in which case D ¼ G in (1) and (2). The resulting Energy

Singular Vectors (ESVs) are generally more straightforward to com-
pute and in the atmosphere have been shown to share properties in
common with analysis error statistics, unlike other proxies such as
the enstrophy or squared-streamfunction norms (Palmer et al.,
1998). While the skill of ESVs in operational numerical weather pre-
diction (NWP) has made them a standard measure of success when
compared to other norms, ESVs do not directly use any information
from the data assimilation system. Gelaro et al. (2002) and
Reynolds et al. (2005) investigated the utility of the inverse analysis
error variance (the diagonal of the analysis error covariance matrix)
from a 3D-Var system for G to define the initial norm. Although dif-
ferent in structure, the resulting SVs explain similar fractions of the
forecast error variance as ESVs.

While most applications of SVD have been in meteorology and
NWP, similar methods have also been successfully applied in ocea-
nography (e.g. Moore and Farrell, 1993; Moore and Mariano, 1999;
Moore et al., 2002; Chhak et al., 2006a,b, 2007, 2009) and climate
(e.g. Blumenthal, 1991; Penland and Sardeshmukh, 1995; Moore
and Kleeman, 1996).

The current work investigates the potential for using a reduced-
rank formulation of HSVs for quantifying ocean forecast errors.
This is explored in a model of a baroclinically unstable temperature
front in a re-entrant channel. Because the dimension of any state-
of-the-art model is generally very large, computation of the HSVs
in the full dimension of the system may be prohibitive in a real-
time forecast environment. The main objective here is to reduce
the dimension of the problem by searching only the model sub-
space explored by data assimilation, as opposed to the entire
state-space of the model. In this approach, the search directions
employed in a 4D-Var system are used as basis functions for a
reduced-rank SVD calculation. An important caveat of the method
proposed is that it has only been applied here to an idealized situa-
tion in an identical twin environment. While this may yield overly
optimistic results, it is nevertheless demonstrated that the pro-
posed method may also prove useful in realistic operational
environments. The computational cost of the reduced-rank
approximation described here is significantly less than that for
methods based on the full rank approach. This provides motivation
for pursuing the reduced-rank approach further.

The paper proceeds as follows: We first formalize the cal-
culation of HSVs in a reduced space in Section 2, starting with
the framework of SVD as well as the reduced rank approximation
of the inverse analysis-error covariance matrix via the Hessian of
the 4D-Var cost function. The configuration of the model is
described in Section 3, while the properties of the 4D-Var data
assimilation system, validation of the tangent linear assumption,
and the efficacy of the HSVs and EOFs in various configurations
are examined in Section 4. The potential practical utility of using
the properties of the HSV singular value spectrum as a predictor
of forecast error is addressed in Section 5. The energetics of the
HSVs and the role of non-normality in controlling HSV growth is
considered in Section 6. We conclude with a summary and discus-
sion of the results and their implications in Section 7.

2. Hessian Singular Vectors and EOFs

2.1. Forecast error EOFs and SVD

Following the notation introduced in Section 1, consider the sit-
uation shown in Fig. 1 in which an ocean forecast is initialized at
time t ¼ 0 from an initial state xað0Þ that is derived from an ocean
analysis using observations from the time interval t ¼ ½�s;0�. In
the specific case considered here, the analysis is computed using
4D-Var. The time evolution of xað0Þ by the forecast model will be
denoted by xrðtÞ ¼ Mðxað0ÞÞ whereM describes the model which
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