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a b s t r a c t

The residual circulation is the flow which transports tracers. Its utility is tempered by the challenge asso-
ciated with its computation: velocity must be mapped into tracer coordinates on a timescale which is
short compared to eddy timescales. Several approximations have been introduced which allow the resid-
ual circulation to be evaluated using a small number of flow statistics, including the transformed Eulerian
mean (TEM), the temporal residual mean (TRM), and the recently introduced statistical transformed Eule-
rian mean (STEM). This paper discusses the relationship between these approximations and illustrates
their differences with a series of analytical and numerical examples. The STEM is found to be superior
to the TEM and TRM in both its handling of the surface boundary condition and its ease of
implementation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The residual circulation is a diagnostic for Lagrangian transport
in the ocean. The precise definition of the ‘‘residual circulation’’ var-
ies depending on the particular application. For oceanic tracer
studies, perhaps the cleanest definition of the residual circulation
is the thickness-weighted average (TWA) velocity in isotracer coor-
dinates, as suggested by de Szoeke and Bennett (1993). Defined this
way, the residual velocity has the appealing property that it is
tangent to tracer isosurfaces if the flow is statistically steady and
purely advective, i.e., without sources, sinks, or diffusion. There is,
in principle, a distinct residual circulation for every tracer, but the
most useful tracers are those directly related to the thermodynam-
ics of the flow, such as heat or salt. When the tracer of choice is
buoyancy, the resulting residual circulation summarizes the move-
ment and transformation of water masses by diabatic processes.

Historically, there are two primary reasons to consider the
residual circulation. In the first case, residual quantities are used
to transform the equations of motion to isolate eddy terms so that
they may be modeled or parameterized (as in, e.g., Andrews and
McIntyre, 1976, 1978; Andrews, 1983; Treguier et al., 1997; Mar-
shall and Radko, 2003, 2006; Gent et al., 1995; Radko, 2005,
2007; Ferreira and Marshall, 2006; Ito and Marshall, 2008). In
the second case, the residual circulation is used as a diagnostic to
understand the dynamics of ocean models (e.g., Henning and

Vallis, 2004, 2005; Hallberg and Gnanadesikan, 2006; Hirabara
et al., 2007; Cerovečki and Marshall, 2008; Cerovečki et al., 2009;
Farneti et al., 2010; Mazloff et al., 2010; Wolfe and Cessi, 2010,
2011; Abernathey et al., 2011) and observations (e.g., Sloyan and
Rintoul, 2001; Talley et al., 2003; Lumpkin and Speer, 2007; Iudi-
cone et al., 2008; Macdonald et al., 2009; Zika et al., 2009, 2010).
This paper is primarily concerned with the second case: the use
of the residual circulation as a diagnostic tool.

While the residual circulation has become a popular diagnostic
for studies of ocean dynamics, its calculation is a nontrivial under-
taking in z-coordinate models: the velocity must be mapped into
tracer coordinates on a timescale that is short compared to eddy
timescales. This requires that the residual circulation either be
calculated online (often contributing significantly to the cost of
the simulation) or from numerous tracer and velocity snapshots
(requiring large amounts of storage space). These problems are
compounded when calculating the residual circulation from obser-
vations, which lack the temporal or spatial resolution to calculate
the residual circulation directly. Approximate methods for calcu-
lating the residual circulation are a useful way of overcoming these
challenges. This paper discusses and compares a number of
techniques by which this may be accomplished and presents them
using a consistent formalism which clarifies their connection to the
TWA residual circulation.

The oldest of these techniques is the transformed Eulerian mean
(TEM, Andrews and McIntyre, 1976), which was developed in the
context of the atmosphere and requires only the mean horizontal
velocity �uH , mean tracer �c, and the eddy correlation u0Hc0, where �
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is an ensemble mean at constant height (typically approximated by
a zonal mean or temporal low-pass filter). Noting that the TEM is
more appropriate for zonally reentrant geometries such as the
atmosphere than for enclosed oceanic basins, McDougall and
McIntosh (1996, 2001) formulated the temporal (or three-dimen-
sional) residual mean (TRM),1 which extends the TEM to account
for the transport of tracer variance c02 by the mean flow. We will
show that the TEM and TRM appear as formal expansions of the
TWA residual circulation in the limit of small tracer variance and
thus require that the tracer variance be small to give an accurate
estimate of the TWA residual circulation. A new technique applicable
to arbitrarily large tracer variance was recently developed in the
atmospheric context by Pauluis et al. (2011, hereafter PSL). The
key to this technique, termed the statistical transformed Eulerian
mean (STEM), is to model the time dependence of the velocity and
tracer fields as Gaussian random processes. This Gaussian approxi-
mation allows the residual circulation be estimated from the first-
and second-order statistics of the flow.

The general properties of the residual circulation are reviewed in
Section 2. Approximations to the residual circulation are discussed
in Section 3, which summarizes the properties of the TEM, TRM,
and STEM. These properties have been previously derived in the
literature cited above, but it is helpful to have them set out in a
consistent framework so that the various approximations can be
more easily compared. We also develop expressions for the TEM
and TRM streamfunctions in coordinates appropriate for arbitrary
tracers which may not be monotonic in the vertical. Readers less
interested in the formal aspects of the theory may wish to skip
directly to Section 4, where the approximations to the residual circu-
lation are illustrated using a series of examples ranging from simple
kinematic models to output from eddy-resolving general circulation
models. These examples show that the STEM proves to be the most
accurate approximation to the residual streamfunction; in particu-
lar, the STEM handles boundaries with ease, while approximations
based on series expansions tend to be poorly behaved near bound-
aries. Alternative definitions of the residual circulation are discussed
in Section 5 and concluding statements are made in Section 6.

2. Definition of the residual circulation

The residual circulation is a device for separating, as much as
possible, the advective transport of tracers from diffusive transport
in unsteady flow. The most commonly used tracer is buoyancy b
(proportional to density), but other tracers, such as salt and heat,
can be useful (see, e.g., Ferrari and Ferreira, 2011; MacCready,
2011). In order to maintain generality, we develop the residual
circulation in terms of a generic tracer c that is almost materially
conserved, so that
ct þ ucx þ vcy þwcz ¼ -; ð1Þ

where - represents the diabatic terms. For simplicity, we use
Cartesian rather than spherical coordinates.

2.1. Tracer coordinates

The residual circulation is developed in tracer coordinates via
the TWA formalism developed by de Szoeke and Bennett (1993),
Smith (1999), Greatbatch and McDougall (2003) and Young

(2012). We make use of the notation of Young (2012). In particular,
we use coordinates ðx; y; z; tÞ when working in height coordinates
and ð~x; ~y;~c;~tÞ when working in tracer coordinates; partial deriva-
tives with respect to the tilde coordinates are taken at constant c
rather than constant z. See Appendix A for a summary of the results
of Young (2012) which are pertinent to this paper.

Formally, the transformation into tracer coordinates can only be
made if c is a monotonic function z and hence invertible (de Szoeke
and Bennett, 1993). The TWA can, however, be generalized in a
way that is valid for nonmonotonic tracer distributions (Nurser
and Lee, 2004a). For any field hðx; y; z; tÞ, define its generalized
TWA ĥð~x; ~y; ~c;~tÞ to be

ĥð~x; ~y; ~c;~tÞ � rh i�1
Z gðx;y;tÞ

�Hðx;yÞ
hðx; y; z; tÞd cðx; y; z; tÞ � ~c½ �dz

* +
; ð2Þ

where the mean differential thickness is

rh ið~x; ~y; ~c;~tÞ �
Z gðx;y;tÞ

�Hðx;yÞ
d cðx; y; z; tÞ � ~c½ �dz

* +
: ð3Þ

Hðx; yÞ is the depth of the ocean, gðx; y; tÞ is the sea surface eleva-
tion, d is the Dirac d-function, and �h i represents an ensemble aver-
age (typically approximated by a time mean or temporal low-pass
filter) at constant ~c. We define ĥ ¼ 0 whenever rh i ¼ 0. The d-func-
tions in (2) and (3) have the effect of binning the rest of the inte-
grand in tracer coordinates using infinitesimally thin bins. This
generalized TWA has the same properties as the TWA formulated
by Young (2012) and reduces to the TWA if ~c is monotonic since
the d-functions are then simplified using the chain rule:

d cðzÞ � ~c½ � ¼ dðz� fÞ
czðfÞ

: ð4Þ

Insertion of this result into (2) and (3) gives (A.1) and (A.2).
The mean isotracer height fh i is found by integrating (3), giving

fh ið~x; ~y; ~c;~tÞ � �
Z gðx;y;tÞ

�Hðx;yÞ
H cðx; y; z; tÞ � ~c½ �dz

* +
ð5Þ

where H is the Heaviside step function. The residual streamfunc-
tion is the mean volume transport above a given tracer isosurface
(Nurser and Lee, 2004a):

wð~x; ~y; ~c;~tÞ �
Z gðx;y;tÞ

�Hðx;yÞ
uHH cðx; y; z; tÞ � ~c½ �dz

* +
: ð6Þ

The integral definitions (2), (5) and (6) ensure that the TWA, mean
height, and residual circulation are properly defined even if c is not
monotonic (as may happen if c is, e.g., salinity). If this is the case,
then the integrals (5) and (6) will ‘‘fold’’ regions with cz < 0 onto re-
gions with cz > 0 with the same tracer value (Nurser and Lee,
2004a). This folding effect must be kept in mind when interpreting
plots of the residual circulation based on nonmonotonic tracers.

The TWA velocity u] (formally defined in Appendix A) is related
to the streamfunction by

rh iûH ¼ �w~c and fh i~t þ rh i-̂ ¼ rc � w; ð7Þ

where

ûH � û̂ıþ v̂ |̂ ð8Þ

is the horizontal residual velocity and

rc � v � @~x ı̂ � vð Þ þ @~y |̂ � vð Þ for any v ð9Þ

is the horizontal ‘‘divergence’’2 at constant c. rc � w is the diatracer
component of u] scaled by rh i. No derivatives of the integral limits
appear in (7) because all boundary terms vanish due to the

1 Some authors (e.g., Greatbatch and McDougall, 2003; Jacobson and Aiki, 2006;
McDougall et al., 2007) use the term TRM to refer to the full TWA rather an
approximation to it. The reason for this appears to be that McDougall and McIntosh
(2001) present an exact expression for the TWA streamfunction which is used to
develop their approximate results. However, the use of the exact TWA in oceanog-
raphy dates back at least to de Szoeke and Bennett (1993); the term TRM was first
introduced in McDougall and McIntosh (1996), which was wholly concerned with
approximate results. We thus prefer to reserve the label TRM for the approximate
results.

2 As pointed out by Young (2012), this is not a true divergence and does not satisfy
a version of Gauss’s theorem.
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