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a b s t r a c t

In this study the evolution of internal solitary waves shoaling onto a shelf is considered. The results of
high resolution two-dimensional numerical simulations of the incompressible Euler equations are com-
pared with the predictions of several weakly-nonlinear shoaling models of the Korteweg–de Vries family
including the Gardner equation and the cubic regularized long wave (or Benjamin–Bona–Mahoney) equa-
tion. Wave models in both physical x–t space and in s–x space are considered where s is a commonly used
characteristic time variable. The effects of rotation, background currents and damping are ignored. The
Boussinesq and rigid lid approximations are also used. The shoaling internal solitary waves generally fis-
sion into several waves. Reflected waves are negligible in the cases considered here. Several hyperbolic
tangent stratifications are considered with and without a critical point. Among the equations in x–t space
the cubic regularized long wave equation gives the best predictions. The Gardner equation in s–x space
gives the best predictions of the shape of the leading waves on the shelf, but for many stratifications it
predicts a propagation speed that is too large.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Internal solitary-like waves (ISWs) are commonly observed in
our oceans where they are usually generated by tide-topography
interactions (Osborne and Burch, 1980; Pingree et al., 1986;
Hibiya, 1988; Lamb, 1994; Gerkema, 2001; Zhao and Alford,
1989). They have been observed in many coastal sites, including
the Scotian Shelf (Sandstrom and Elliott, 1984), the Australian North
West Shelf (Holloway et al., 1997), the Bay of Biscay (Pingree et al.,
1986), the Mauritanian Coast (Schafstall et al., 2010), the Sulu Sea
(Apel et al., 1975), Strait of Gibraltar (Morozov et al., 2002), the Ore-
gon Shelf (Moum et al., 2003; Moum et al., 2007) and East and South
China Seas (Liu et al., 1998). Recent observations of shoaling ISWs
on the New Jersey Shelf have shown examples of polarity reversal
(Shroyer et al., 2009; Shroyer et al., 2010), mode-two solitary-like
waves (Shroyer et al., 2010), and flat-crested waves (Shroyer
et al., 2011). Remote sensing techniques often show a very compli-
cated internal wave field with large numbers of overlapping, inter-
acting wave packets generated at multiple sites (Hsu et al., 2000;
Quaresma et al., 2007). Fig. 1 in Jackson et al. (2012) show the

widespread occurrence of ISWs as observed from MODIS satellite
imagery.

Exact solitary waves exist in an inviscid, horizontally homoge-
neous stratified fluid of constant depth with a rigid lid and in the
absence of rotation (Turkington et al., 1991; Lamb, 2002). They
do not exist in the ocean for several reasons, including the effects
of rotation (Helfrich and Grimshaw, 2008), the free-surface, vari-
able water depth, and horizontally varying stratification and cur-
rents. Never-the-less, solitary-like waves are commonly
observed, the properties of which are often accurately predicted
by solitary wave solutions of the full nonlinear equations and,
indeed, by solitary wave solutions of a number of approximate
nonlinear-dispersive wave equations (Ostrovsky and Grue, 2003;
Vlasenko et al., 2005; Small and Hornby, 2005). In the ocean ISWs
are typically hundreds of meters in length with amplitudes (max-
imum isopycnal displacement) on the order of tens of meters,
although waves on the order of 200 m in amplitude and 2 km in
length have been been observed in deep water, e.g., in the South
China Sea (Klymak et al., 2006).

An early motivation for studying ISWs was the suspicion that
they could be the source of large stresses suffered by off-shore
oil-drilling rigs (Osborne and Burch, 1980). They are also important
because they can transport fluid (Lamb, 1997) and energy large
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distances. As they propagate they can trigger instabilities in the
bottom boundary layer beneath the waves (Bogucki et al., 2005;
Carter et al., 2005; Moum et al., 2007; Stastna and Lamb, 2008;
Aghsaee et al., 2012) and as they shoal into shallow water they
can break (Helfrich, 1992; Michallet and Ivey, 1999; Bourgault
and Kelley, 2007; Lamb and Nguyen, 2009; Vlasenko and Hutter,
2002). ISWs are believed to be at times an important source of ver-
tical mixing in coastal oceans (Shroyer et al., 2010) and play an
important role in nutrient dispersion and sediment transport
(Huthnance, 1989). Because shoaling ISWs are a common occur-
rence it is important to understand the transformation of an ISW
as it shoals.

Many laboratory experiments have been conducted to investi-
gate the behaviour of a single ISW approaching a continental slope
under conditions in which the pycnocline intersects the slope
(Helfrich, 1992; Michallet and Ivey, 1999). Helfrich and Melville
(1986) and Cheng et al. (2011) investigated ISWs shoaling onto a
shelf using stratifications with the pycnocline lying above the shelf
with the surface layer thicker than the lower layer on the shelf.
Under these conditions shoaling waves pass through a critical
point and undergo a polarity reversal. Experiments have also been
conducted for cases in which the upper layer remains shallower
than the lower layer on the shelf (Kao et al., 1985). The evolution
of ISWs passing over a ridge has also been investigated (Sveen
et al., 2002; Guo et al., 2004).

Numerical studies of shoaling ISWs generally fall into two cat-
egories: fully nonlinear models and weakly nonlinear models.
Weakly-nonlinear models have been frequently used to interpret
observations of shoaling waves and to explore their evolution
(Small et al., 1999; Holloway et al., 1999; Grimshaw et al., 2004).
These are typically based on the KdV equation and its extensions.
An important extension that includes cubic nonlinearity is the
Gardner equation, also called the extended KdV equation, which
has the form

gt þ c0gx þ aggx þ a1g2gx þ bgxxx ¼ 0; ð1Þ

where t is time, x is the horizontal coordinate, and gðx; tÞ is the wave
shape which for convenience can be interpreted as the maximum
vertical isopycnal displacement. The coefficients are determined
by the background stratification and currents and are given in terms
of vertical structure functions (Lamb and Yan, 1996). Equations
with higher-order dispersive terms have been derived (Lamb and
Yan, 1996) and extended to a non-Boussinesq fluid with a free sur-
face by Grimshaw et al. (2002). For shoaling waves the coefficients
are functions of x and an additional shoaling term is added to the
equation (next section). Additional terms to model the effects of
damping or the Earth’s rotation can also be added (Holloway
et al., 1999; Grimshaw et al., 2004). Several mathematical and
numerical studies of the KdV and Gardner equations with time-
varying nonlinear coefficients have been carried out (Grimshaw
et al., 1998; Nakoulima et al., 2004).

Other weakly-nonlinear models include the Joseph-Kubota
equation for waves in a finite-depth fluid (Joseph, 1977; Kubota
et al., 1978) and the Benjamin–Ono, or Benjamin–Davis–Ono,
equation (BO) for stratifications with a thin upper layer
(Benjamin, 1967; Ono, 1975). These are described in Liu et al.
(1985) where the Joseph-Kubota equation is used to model waves
in the Sulu Sea. Koop and Butler (1981) found that the KdV was
more accurate in parameter regimes in which other equations
would be expected to be more appropriate. We only consider equa-
tions of the KdV type here.

The Gardner equation is valid for small amplitude long waves.
The linearized equation has the dispersion relation

r ¼ c0k� bk3
; ð2Þ

where k is the wave number and r the wave frequency. Noting that
b > 0 for internal waves, as k!1 the frequency, phase speed
c ¼ r=k and group velocity cg ¼ rk all go to �1 which is physically
incorrect. It also leads to difficulties in finding numerical solutions
of the KdV equation. For this reason many authors have studied
the regularized long wave (RLW), or Benjamin–Bona–Mahoney
(BBM), equation which is derived by using the dominant balance
gt � �c0gx, to replace one x derivative in the dispersive term by a
time derivative. The RLW equation, extended to include the cubic
nonlinear term, which we call the cubic RLW equation, is

gt þ c0gx þ aggx þ a1g2gx �
b
c0

gtxx ¼ 0; ð3Þ

which has the linear dispersion relation

r ¼ c0k

1þ b
c0

k3 : ð4Þ

This has the physically realistic property that the phase speed
and group velocity go to zero as k!1 which simplifies finding
numerical solutions. The phase speed goes to zero monotonically
while the group velocity has a negative minimum of �c0=8 at
k ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
3c0=b

p
before going to 0 from below as k!1. With full linear

dispersion the phase speed and group velocity are always positive
and decay to zero monotonically as k!1 however their asymp-
totic behaviour depends on the stratification. For example if the
buoyancy frequency N is constant c � N=k and cg � Nm2=k3 as
k!1 where m is the vertical wave number. For a two layer strat-
ification c and cg decay like k�

1
2 as k!1. Shoaling weakly-nonlin-

ear models based on the cubic RLW equation (3) have been used by
Cai et al. (2002b) and Cai et al. (2002a).

Weakly-nonlinear models by their nature can not give a com-
plete description of shoaling ISWs: they always have an amplitude
limit; most are unidirectional, so wave reflection cannot be mod-
elled (Boussinesq-type models are bi-directional); and most
weakly-nonlinear models, including those considered here, are
uni-modal and hence cannot describe the transfer of energy to
other wave modes as an ISW shoals. To obtain a more complete
description of shoaling ISWs, fully nonlinear numerical models
have been used. For example, Bourgault and Kelley (2003) numer-
ically solved the laterally-averaged Boussinesq Navier–Stokes
equations to reproduce the experimental results reported by
Michallet and Ivey (1999). The fully nonlinear numerical model
used here has been used to investigate the formation of ISWs with
trapped cores during shoaling (Lamb, 2002; Lamb, 2003) and to
study shoaling waves in situations in which the pycnocline inter-
sects the boundary (Lamb and Nguyen, 2009). Vlasenko and
Hutter (2002) investigated ISWs shoaling onto a shelf, focussing
on cases with steep slopes for which the shoaling waves broke.
Shoaling over small shelf slopes was investigated by Vlasenko
et al. (2005) who considered cases for which the waves shoaled
adiabatically, i.e., cases for which the depth varied sufficiently
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Fig. 1. Bathymetries used in the simulations. The bathymetric slopes are 0.01,
0.025, 0.1 and 0.25. For the steepest bathymetry and one of the two bathymetries
with a slope of 0.1 w ¼ 0:5. For the other bathymetries w ¼ 2:5.
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